
Contents
1 Introduction 3

1.1 Who is this book for? . 4
1.2 What does this book cover? . 4
1.3 What do you need to start? . 5

2 Getting started 6
2.1 What is a fragment shader? . 6
2.2 Why are shaders fast? . 6
2.3 What is GLSL? . 8
2.4 Why are Shaders famously painful? 9
2.5 Hello World . 10
2.6 Uniforms . 12
2.7 gl_FragCoord . 13
2.8 Running your shader . 14
2.9 Running your shaders on the browser 14
2.10 Running your shaders on your favorite framework 17

2.10.1 In Three.js . 17
2.10.2 In Processing . 19
2.10.3 In openFrameworks . 20
2.10.4 In Blender . 21

3 Algorithmic drawing 23
3.1 Shaping functions . 23

3.1.1 Step and Smoothstep . 26
3.1.2 Sine and Cosine . 28
3.1.3 Some extra useful functions 29
3.1.4 Advance shaping functions 29

3.2 Colors . 32
3.2.1 Mixing color . 35
3.2.2 Playing with gradients . 37
3.2.3 HSB . 41
3.2.4 HSB in polar coordinates 42

3.3 Shapes . 45
3.3.1 Rectangle . 45
3.3.2 Circles . 51
3.3.3 Distance field . 54
3.3.4 Useful properties of a Distance Field 56
3.3.5 Polar shapes . 58
3.3.6 Combining powers . 60

3.4 2D Matrices . 61
3.4.1 Translate . 61
3.4.2 Rotations . 63
3.4.3 Scale . 66
3.4.4 Other uses for matrices: YUV color 67

1

3.5 Patterns . 69
3.5.1 Apply matrices inside patterns 71
3.5.2 Offset patterns . 73

3.6 Truchet Tiles . 75
3.7 Making your own rules . 77

4 Generative designs 79
4.1 Random . 79
4.2 Controlling chaos . 80
4.3 2D Random . 80
4.4 Using the chaos . 81
4.5 Master Random . 84
4.6 Noise . 85
4.7 2D Noise . 88
4.8 Using Noise in Generative Designs 92
4.9 Improved Noise . 96
4.10 Simplex Noise . 96
4.11 Cellular Noise . 101

4.11.1 Points for a distance field 101
4.11.2 Tiling and iteration . 103
4.11.3 Voronoi Algorithm . 109
4.11.4 Improving Voronoi . 111

4.12 Fractal Brownian Motion . 112
4.12.1 Domain Warping . 119

4.13 Fractals . 120

5 Image processing 121
5.1 Textures . 121
5.2 Texture resolution . 124
5.3 Digital upholstery . 126
5.4 Image operations . 129

5.4.1 Invert . 129
5.4.2 Add, Substract, Multiply and others 129
5.4.3 PS Blending modes . 131

5.5 Kernel convolutions . 133
5.6 Filters . 133

6 Appendix 133

7 Examples Gallery 133

8 Glossary 134
8.1 By theme . 134
8.2 Alphabetical . 135

2

1 Introduction
The images above were made in different ways. The first one was made by Van
Gogh’s hand applying layer over layer of paint. It took him hours. The second
was produced in seconds by the combination of four matrices of pixels: one for
cyan, one for magenta, one for yellow and one for black. The key difference is
that the second image is produced in a non-serial way (that means not step-by-
step, but all at the same time).

This book is about the revolutionary computational technique, fragment shaders,
that is taking digitally generated images to the next level. You can think of it
as the equivalent of Gutenberg’s press for graphics.

Figure 1: Gutenberg’s press

Fragment shaders give you total control over the pixels rendered on the screen
at a super fast speed. This is why they’re used in all sort of cases, from video

3

filters on cellphones to incredible 3D video games.

Figure 2: Journey by That Game Company

In the following chapters you will discover how incredibly fast and powerful this
technique is and how to apply it to your professional and personal work.

1.1 Who is this book for?
This book is written for creative coders, game developers and engineers who
have coding experience, a basic knowledge of linear algebra and trigonometry,
and who want to take their work to an exciting new level of graphical quality.
(If you want to learn how to code, I highly recommend you start with Processing
and come back later when you are comfortable with it.)

This book will teach you how to use and integrate shaders into your projects,
improving their performance and graphical quality. Because GLSL (OpenGL
Shading Language) shaders compile and run on a variety of platforms, you will
be able to apply what you learn here to any enviroment that uses OpenGL,
OpenGL ES or WebGL. In other words, you will be able to apply and use
your knowledge with Processing sketches, openFrameworks applications, Cinder
interactive installations, Three.js websites or iOS/Android games.

1.2 What does this book cover?
This book will focus on the use of GLSL pixel shaders. First we’ll define what
shaders are; then we’ll learn how to make procedural shapes, patterns, textures

4

https://processing.org/
https://processing.org/
http://openframeworks.cc/
http://libcinder.org/
http://threejs.org/

and animations with them. You’ll learn the foundations of shading language
and apply it to more useful scenarios such as: image processing (image opera-
tions, matrix convolutions, blurs, color filters, lookup tables and other effects)
and simulations (Conway’s game of life, Gray-Scott’s reaction-diffusion, water
ripples, watercolor effects, Voronoi cells, etc.). Towards the end of the book
we’ll see a set of advanced techniques based on Ray Marching.

There are interactive examples for you to play with in every chapter. When you
change the code, you will see the changes immediately. The concepts can be
abstract and confusing, so the interactive examples are essential to helping you
learn the material. The faster you put the concepts into motion the easier the
learning process will be.

What this book doesn’t cover:

• This is not an openGL or webGL book. OpenGL/webGL is a bigger sub-
ject than GLSL or fragment shaders. To learn more about openGL/webGL
I recommend taking a look at: OpenGL Introduction, the 8th edition of
the OpenGL Programming Guide (also known as the red book) or WebGL:
Up and Running

• This is not a math book. Although we will cover a number of algorithms
and techniques that rely on an understanding of algebra and trigonometry,
we will not explain them in detail. For questions regarding the math I
recommend keeping one of the following books nearby: 3rd Edition of
Mathematics for 3D Game Programming and computer Graphics or 2nd
Edition of Essential Mathematics for Games and Interactive Applications.

1.3 What do you need to start?
Not much! If you have a modern browser that can do WebGL (like Chrome,
Firefox or Safari) and a internet connection, click the “Next” Chapter button
at the end of this page to get started.

Alternatively, based on what you have or what you need from this book you
can:

• Make an off-line version of this book

• Run the examples on a Raspberry Pi without a browser

• Make a PDF of the book to print

• Check the GitHub repository of this book to help resolve issues and share
code.

5

https://open.gl/introduction
http://www.amazon.com/OpenGL-Programming-Guide-Official-Learning/dp/0321773039/ref=sr_1_1?s=books&ie=UTF8&qid=1424007417&sr=1-1&keywords=open+gl+programming+guide
http://www.amazon.com/OpenGL-Programming-Guide-Official-Learning/dp/0321773039/ref=sr_1_1?s=books&ie=UTF8&qid=1424007417&sr=1-1&keywords=open+gl+programming+guide
http://www.amazon.com/WebGL-Up-Running-Tony-Parisi/dp/144932357X/ref=sr_1_4?s=books&ie=UTF8&qid=1425147254&sr=1-4&keywords=webgl
http://www.amazon.com/WebGL-Up-Running-Tony-Parisi/dp/144932357X/ref=sr_1_4?s=books&ie=UTF8&qid=1425147254&sr=1-4&keywords=webgl
http://www.amazon.com/Mathematics-Programming-Computer-Graphics-Third/dp/1435458869/ref=sr_1_1?ie=UTF8&qid=1424007839&sr=8-1&keywords=mathematics+for+games
http://www.amazon.com/Mathematics-Programming-Computer-Graphics-Third/dp/1435458869/ref=sr_1_1?ie=UTF8&qid=1424007839&sr=8-1&keywords=mathematics+for+games
http://www.amazon.com/Essential-Mathematics-Games-Interactive-Applications/dp/0123742978/ref=sr_1_1?ie=UTF8&qid=1424007889&sr=8-1&keywords=essentials+mathematics+for+developers
http://www.amazon.com/Essential-Mathematics-Games-Interactive-Applications/dp/0123742978/ref=sr_1_1?ie=UTF8&qid=1424007889&sr=8-1&keywords=essentials+mathematics+for+developers
https://thebookofshaders.com/appendix/00/
https://thebookofshaders.com/appendix/01/
https://thebookofshaders.com/appendix/02/
https://github.com/patriciogonzalezvivo/thebookofshaders

2 Getting started
2.1 What is a fragment shader?
In the previous chapter we described shaders as the equivalent of the Gutenberg
press for graphics. Why? And more importantly: what’s a shader?

Figure 3: From Letter-by-Letter, Right: William Blades (1891). To Page-by-
page, Left: Rolt-Wheeler (1920).

If you already have experience making drawings with computers, you know that
in that process you draw a circle, then a rectangle, a line, some triangles until
you compose the image you want. That process is very similar to writing a letter
or a book by hand - it is a set of instructions that do one task after another.

Shaders are also a set of instructions, but the instructions are executed all at
once for every single pixel on the screen. That means the code you write has
to behave differently depending on the position of the pixel on the screen. Like
a type press, your program will work as a function that receives a position and
returns a color, and when it’s compiled it will run extraordinarily fast.

2.2 Why are shaders fast?
To answer this, I present the wonders of parallel processing.

Imagine the CPU of your computer as a big industrial pipe, and every task as
something that passes through it - like a factory line. Some tasks are bigger than
others, which means they require more time and energy to deal with. We say
they require more processing power. Because of the architecture of computers
the jobs are forced to run in a series; each job has to be finished one at a time.
Modern computers usually have groups of four processors that work like these

6

Figure 4: Chinese movable type

pipes, completing tasks one after another to keep things running smoothly. Each
pipe is also known as a thread.

Figure 5: CPU

Video games and other graphic applications require a lot more processing power
than other programs. Because of their graphic content they have to do huge
numbers of pixel-by-pixel operations. Every single pixel on the screen needs to
be computed, and in 3D games geometries and perspectives need to be calculated
as well.

Let’s go back to our metaphor of the pipes and tasks. Each pixel on the screen
represents a simple small task. Individually each pixel task isn’t an issue for the
CPU, but (and here is the problem) the tiny task has to be done to each pixel
on the screen! That means in an old 800x600 screen, 480,000 pixels have to pro-

7

cessed per frame which means 14,400,000 calculations per second! Yes! That’s a
problem big enough to overload a microprocessor. In a modern 2880x1800 retina
display running at 60 frames per second that calculation adds up to 311,040,000
calculations per second. How do graphics engineers solve this problem?

This is when parallel processing becomes a good solution. Instead of having a
couple of big and powerful microprocessors, or pipes, it is smarter to have lots
of tiny microprocessors running in parallel at the same time. That’s what a
Graphic Processor Unit (GPU) is.

Picture the tiny microprocessors as a table of pipes, and the data of each pixel
as a ping pong ball. 14,400,000 ping pong balls a second can obstruct almost
any pipe. But a table of 800x600 tiny pipes receiving 30 waves of 480,000 pixels
a second can be handled smoothly. This works the same at higher resolutions -
the more parallel hardware you have, the bigger the stream it can manage.

Another “super power” of the GPU is special math functions accelerated via
hardware, so complicated math operations are resolved directly by the mi-
crochips instead of by software. That means extra fast trigonometrical and
matrix operations - as fast as electricity can go.

2.3 What is GLSL?
GLSL stands for openGL Shading Language, which is the specific standard of
shader programs you’ll see in the following chapters. There are other types of
shaders depending on hardware and Operating Systems. Here we will work with
the openGL specs regulated by Khronos Group. Understanding the history of
OpenGL can be helpful for understanding most of its weird conventions, for
that I recommend taking a look at: openglbook.com/chapter-0-preface-what-is-
opengl.html

8

https://www.khronos.org/opengl/
http://openglbook.com/chapter-0-preface-what-is-opengl.html
http://openglbook.com/chapter-0-preface-what-is-opengl.html

Figure 6: GPU

2.4 Why are Shaders famously painful?
As Uncle Ben said “with great power comes great responsibility,” and parallel
computation follows this rule; the powerful architectural design of the GPU
comes with its own constraints and restrictions.

In order to run in parallel every pipe, or thread, has to be independent from
every other thread. We say the threads are blind to what the rest of the threads
are doing. This restriction implies that all data must flow in the same direction.
So it’s impossible to check the result of another thread, modify the input data,
or pass the outcome of a thread into another thread. Allowing thread-to-thread
communications puts the integrity of the data at risk.

Also the GPU keeps the parallel micro-processor (the pipes) constantly busy; as
soon as they get free they receive new information to process. It’s impossible
for a thread to know what it was doing in the previous moment. It could
be drawing a button from the UI of the operating system, then rendering a
portion of sky in a game, then displaying the text of an email. Each thread
is not just blind but also memoryless. Besides the abstraction required to
code a general function that changes the result pixel by pixel depending on its
position, the blind and memoryless constraints make shaders not very popular
among beginning programmers.

9

Don’t worry! In the following chapters, we will learn step-by-step how to go
from simple to advanced shading computations. If you are reading this with a
modern browser, you will appreciate playing with the interactive examples. So
let’s not delay the fun any longer and press Next >> to jump into the code!

2.5 Hello World
Usually the “Hello world!” example is the first step to learning a new language.
It’s a simple one-line program that outputs an enthusiastic welcoming message
and declares opportunities ahead.

In GPU-land rendering text is an overcomplicated task for a first step, instead
we’ll choose a bright welcoming color to shout our enthusiasm!

#ifdef GL_ES
precision mediump float;
#endif

uniform float u_time;

void main() {
gl_FragColor = vec4(1.0,0.0,1.0,1.0);

}

If you are reading this book in a browser the previous block of code is interactive.
That means you can click and change any part of the code you want to explore.
Changes will be updated immediately thanks to the GPU architecture that
compiles and replaces shaders on the fly. Give it a try by changing the values
on line 8.

Although these simple lines of code don’t look like a lot, we can infer substantial
knowledge from them:

1. Shader Language has a single main function that returns a color at the
end. This is similar to C.

2. The final pixel color is assigned to the reserved global variable
gl_FragColor.

3. This C-flavored language has built in variables (like gl_FragColor), func-
tions and types. In this case we’ve just been introduced to vec4 that
stands for a four dimensional vector of floating point precision. Later we
will see more types like vec3 and vec2 together with the popular: float,
int and bool.

4. If we look closely to the vec4 type we can infer that the four arguments
respond to the RED, GREEN, BLUE and ALPHA channels. Also we can
see that these values are normalized, which means they go from 0.0 to
1.0. Later, we will learn how normalizing values makes it easier to map
values between variables.

10

5. Another important C feature we can see in this example is the presence
of preprocessor macros. Macros are part of a pre-compilation step. With
them it is possible to #define global variables and do some basic con-
ditional operation (with #ifdef and #endif). All the macro commands
begin with a hashtag (#). Pre-compilation happens right before compil-
ing and copies all the calls to #defines and check #ifdef (is defined)
and #ifndef (is not defined) conditionals. In our “hello world!” example
above, we only insert the line 2 if GL_ES is defined, which mostly happens
when the code is compiled on mobile devices and browsers.

6. Float types are vital in shaders, so the level of precision is crucial. Lower
precision means faster rendering, but at the cost of quality. You can be
picky and specify the precision of each variable that uses floating point.
In the second line (precision mediump float;) we are setting all floats
to medium precision. But we can choose to set them to low (precision
lowp float;) or high (precision highp float;).

7. The last, and maybe most important, detail is that GLSL specs don’t
guarantee that variables will be automatically casted. What does that
mean? Manufacturers have different approaches to accelerate graphics
card processes but they are forced to guarantee minimum specs. Auto-
matic casting is not one of them. In our “hello world!” example vec4 has
floating point precision and for that it expects to be assigned with floats.
If you want to make good consistent code and not spend hours debugging
white screens, get used to putting the point (.) in your floats. This kind
of code will not always work:

void main() {
gl_FragColor = vec4(1,0,0,1); // ERROR

}

Now that we’ve described the most relevant elements of our “hello world!” pro-
gram, it’s time to click on the code block and start challenging all that we’ve
learned. You will note that on errors, the program will fail to compile, showing
a white screen. There are some interesting things to try, for example:

• Try replacing the floats with integers, your graphic card may or may not
tolerate this behavior.

• Try commenting out line 8 and not assigning any pixel value to the func-
tion.

• Try making a separate function that returns a specific color and use it
inside main(). As a hint, here is the code for a function that returns a
red color:

vec4 red(){
return vec4(1.0,0.0,0.0,1.0);

}

11

• There are multiple ways of constructing vec4 types, try to discover other
ways. The following is one of them:

vec4 color = vec4(vec3(1.0,0.0,1.0),1.0);

Although this example isn’t very exciting, it is the most basic example - we
are changing all the pixels inside the canvas to the same exact color. In the
following chapter we will see how to change the pixel colors by using two types
of input: space (the place of the pixel on the screen) and time (the number of
seconds since the page was loaded).

2.6 Uniforms
So far we have seen how the GPU manages large numbers of parallel threads,
each one responsible for assigning the color to a fraction of the total image.
Although each parallel thread is blind to the others, we need to be able to send
some inputs from the CPU to all the threads. Because of the architecture of the
graphics card those inputs are going to be equal (uniform) to all the threads
and necessarily set as read only. In other words, each thread receives the same
data which it can read but cannot change.

These inputs are called uniform and come in most of the supported types:
float, vec2, vec3, vec4, mat2, mat3, mat4, sampler2D and samplerCube. Uni-
forms are defined with the corresponding type at the top of the shader right
after assigning the default floating point precision.

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution; // Canvas size (width,height)
uniform vec2 u_mouse; // mouse position in screen pixels
uniform float u_time; // Time in seconds since load

You can picture the uniforms like little bridges between the CPU and the GPU.
The names will vary from implementation to implementation but in this se-
ries of examples I’m always passing: u_time (time in seconds since the shader
started), u_resolution (billboard size where the shader is being drawn) and
u_mouse (mouse position inside the billboard in pixels). I’m following the con-
vention of putting u_ before the uniform name to be explicit about the nature
of this variable but you will find all kinds of names for uniforms. For example
ShaderToy.com uses the same uniforms but with the following names:

uniform vec3 iResolution; // viewport resolution (in pixels)
uniform vec4 iMouse; // mouse pixel coords. xy: current, zw: click
uniform float iTime; // shader playback time (in seconds)

Enough talking, let’s see the uniforms in action. In the following code we use
u_time - the number of seconds since the shader started running - together with

12

https://www.shadertoy.com/

a sine function to animate the transition of the amount of red in the billboard.

#ifdef GL_ES
precision mediump float;
#endif

uniform float u_time;

void main() {
gl_FragColor = vec4(abs(sin(u_time)),0.0,0.0,1.0);

}

As you can see GLSL has more surprises. The GPU has hardware accelerated
angle, trigonometric and exponential functions. Some of those functions are:
sin(), cos(), tan(), asin(), acos(), atan(), pow(), exp(), log(), sqrt(),
abs(), sign(), floor(), ceil(), fract(), mod(), min(), max() and clamp().

Now it is time again to play with the above code.

• Slow down the frequency until the color change becomes almost impercep-
tible.

• Speed it up until you see a single color without flickering.

• Play with the three channels (RGB) in different frequencies to get inter-
esting patterns and behaviors.

2.7 gl_FragCoord
In the same way GLSL gives us a default output, vec4 gl_FragColor, it also
gives us a default input, vec4 gl_FragCoord, which holds the screen coordi-
nates of the pixel or screen fragment that the active thread is working on. With
vec4 gl_FragCoord, we know where a thread is working inside the billboard.
In this case we don’t call it uniform because it will be different from thread to
thread, instead gl_FragCoord is called a varying.

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

void main() {
vec2 st = gl_FragCoord.xy/u_resolution;
gl_FragColor = vec4(st.x,st.y,0.0,1.0);

}

13

In the above code we normalize the coordinate of the fragment by dividing it by
the total resolution of the billboard. By doing this the values will go between
0.0 and 1.0, which makes it easy to map the X and Y values to the RED and
GREEN channel.

In shader-land we don’t have too many resources for debugging besides assigning
strong colors to variables and trying to make sense of them. You will discover
that sometimes coding in GLSL is very similar to putting ships inside bottles.
Is equally hard, beautiful and gratifying.

Now it is time to try and challenge our understanding of this code.

• Can you tell where the coordinate (0.0, 0.0) is in our canvas?

• What about (1.0, 0.0), (0.0, 1.0), (0.5, 0.5) and (1.0, 1.0)?

• Can you figure out how to use u_mouse knowing that the values are in
pixels and NOT normalized values? Can you use it to move colors around?

• Can you imagine an interesting way of changing this color pattern using
u_time and u_mouse coordinates?

After doing these exercises you might wonder where else you can try your new
shader-powers. In the following chapter we will see how to make your own
shader tools in three.js, Processing, and openFrameworks.

2.8 Running your shader
As part of the construction of this book and my art practice I made an ecosys-
tem of tools to create, display, share and curate shaders. These tools work
consistently across Linux, MacOS, Windows and Raspberry Pi and browsers
without the need of changing your code.

2.9 Running your shaders on the browser
Display: all live examples in this book are displayed using glslCanvas which
makes the process of running standalone shader incredible easy.

14

https://www.raspberrypi.org/
https://github.com/patriciogonzalezvivo/glslCanvas

<canvas class="glslCanvas" data-fragment-url=“yourShader.frag" data-textures=“yourInputImage.png” width="500" height="500"></canvas>

As you can see, it just needs a canvas element with class="glslCanvas" and
the url to your shader in the data-fragment-url. Learn more about it here.

If you are like me, you will probably want to run shaders directly from the
console, in that case you should check out glslViewer. This application allows
you to incorporate shaders into your bash scripts or unix pipelines and use it in
a similar way to ImageMagick. Also glslViewer is a great way to compile shaders
on your Raspberry Pi, which is the reason openFrame.io uses it to display shader
artwork. Learn more about this application here.

glslViewer yourShader.frag yourInputImage.png —w 500 -h 500 -s 1 -o yourOutputImage.png

Create: in order to illuminate the experience of coding shaders I made an online
editor called glslEditor. This editor is embedded on the book’s live examples, it
brings a series of handy widgets to make more tangible the abstract experience
of working with glsl code. You can also run it as a standalone web application
from editor.thebookofshaders.com/. Learn more about it here.

If you prefer to work offline using SublimeText you can install this package for
glslViewer. Learn more about it here.

15

https://github.com/patriciogonzalezvivo/glslCanvas
https://github.com/patriciogonzalezvivo/glslViewer
http://www.imagemagick.org/script/index.php
https://github.com/patriciogonzalezvivo/glslViewer
https://www.raspberrypi.org/
http://openframe.io/
https://github.com/patriciogonzalezvivo/glslViewer
https://github.com/patriciogonzalezvivo/glslEditor
http://editor.thebookofshaders.com/
https://github.com/patriciogonzalezvivo/glslEditor
https://www.sublimetext.com/
https://packagecontrol.io/packages/glslViewer
https://packagecontrol.io/packages/glslViewer
https://github.com/patriciogonzalezvivo/sublime-glslViewer

Share: the online editor (editor.thebookofshaders.com/) can share your
shaders! Both the embedded and standalone version have an export button
where you can get an unique URL’s to your shader. Also it has the ability to
export directly to an openFrame.io.

Curate: Sharing your code is the beginning of you sharing your shader as
artwork! Beside the option to export to openFrame.io I made a tool to curate
your shaders into a gallery that can be embedded on any site, it’s name is

16

http://editor.thebookofshaders.com/
http://openframe.io/
http://openframe.io/

glslGallery. Learn more here.

2.10 Running your shaders on your favorite framework
In case you already have experience programming in a framework like: Process-
ing, Three.js or OpenFrameworks, you’re probably excited to try shaders on
these platforms you feel comfortable with. The following are examples of how
to set shaders in some popular frameworks with the same uniforms that we are
going to use throughout this book. (In the GitHub repository for this chapter,
you’ll find the full source code for these three frameworks.)

2.10.1 In Three.js

The brilliant and very humble Ricardo Cabello (aka MrDoob) has been develop-
ing along with other contributors probably one of the most famous frameworks
for WebGL, called Three.js. You will find a lot of examples, tutorials and books
that teach you how to use this JavaScript library to make cool 3D graphics.

Below is an example of the HTML and JS you need to get started with shaders
in three.js. Pay attention to the id="fragmentShader" script, here is where
you can copy the shaders you find in this book.

<body>
<div id="container"></div>
<script src="js/three.min.js"></script>
<script id="vertexShader" type="x-shader/x-vertex">

void main() {
gl_Position = vec4(position, 1.0);

17

https://github.com/patriciogonzalezvivo/glslGallery
https://github.com/patriciogonzalezvivo/glslGallery
https://processing.org/
https://processing.org/
http://threejs.org/
http://openframeworks.cc/
https://github.com/patriciogonzalezvivo/thebookofshaders/tree/master/04
https://twitter.com/mrdoob
https://github.com/mrdoob/three.js/graphs/contributors
http://threejs.org/

}
</script>
<script id="fragmentShader" type="x-shader/x-fragment">

uniform vec2 u_resolution;
uniform float u_time;

void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
gl_FragColor=vec4(st.x,st.y,0.0,1.0);

}
</script>
<script>

var container;
var camera, scene, renderer;
var uniforms;

init();
animate();

function init() {
container = document.getElementById('container');

camera = new THREE.Camera();
camera.position.z = 1;

scene = new THREE.Scene();

var geometry = new THREE.PlaneBufferGeometry(2, 2);

uniforms = {
u_time: { type: "f", value: 1.0 },
u_resolution: { type: "v2", value: new THREE.Vector2() },
u_mouse: { type: "v2", value: new THREE.Vector2() }

};

var material = new THREE.ShaderMaterial({
uniforms: uniforms,
vertexShader: document.getElementById('vertexShader').textContent,
fragmentShader: document.getElementById('fragmentShader').textContent

});

var mesh = new THREE.Mesh(geometry, material);
scene.add(mesh);

renderer = new THREE.WebGLRenderer();
renderer.setPixelRatio(window.devicePixelRatio);

18

container.appendChild(renderer.domElement);

onWindowResize();
window.addEventListener('resize', onWindowResize, false);

document.onmousemove = function(e){
uniforms.u_mouse.value.x = e.pageX
uniforms.u_mouse.value.y = e.pageY

}
}

function onWindowResize(event) {
renderer.setSize(window.innerWidth, window.innerHeight);
uniforms.u_resolution.value.x = renderer.domElement.width;
uniforms.u_resolution.value.y = renderer.domElement.height;

}

function animate() {
requestAnimationFrame(animate);
render();

}

function render() {
uniforms.u_time.value += 0.05;
renderer.render(scene, camera);

}
</script>

</body>

2.10.2 In Processing

Started by Ben Fry and Casey Reas in 2001, Processing is an extraordinar-
ily simple and powerful environment in which to take your first steps in code
(it was for me at least). Andres Colubri has made important updates to the
openGL and video in Processing, making it easier than ever to use and play
with GLSL shaders in this friendly environment. Processing will search for the
shader named "shader.frag" in the data folder of the sketch. Be sure to copy
the examples you find here into that folder and rename the file.

PShader shader;

void setup() {
size(640, 360, P2D);
noStroke();

19

http://benfry.com/
http://reas.com/
https://processing.org/
https://codeanticode.wordpress.com/

shader = loadShader("shader.frag");
}

void draw() {
shader.set("u_resolution", float(width), float(height));
shader.set("u_mouse", float(mouseX), float(mouseY));
shader.set("u_time", millis() / 1000.0);
shader(shader);
rect(0,0,width,height);

}

In order for the shader to work on versions previous to 2.1, you need
to add the following line at the beginning of your shader: #define
PROCESSING_COLOR_SHADER. So that it looks like this:

#ifdef GL_ES
precision mediump float;
#endif

#define PROCESSING_COLOR_SHADER

uniform vec2 u_resolution;
uniform vec3 u_mouse;
uniform float u_time;

void main() {
vec2 st = gl_FragCoord.st/u_resolution;
gl_FragColor = vec4(st.x,st.y,0.0,1.0);

}

For more information about shaders in Processing check out this tutorial.

2.10.3 In openFrameworks

Everybody has a place where they feel comfortable, in my case, that’s still the
openFrameworks community. This C++ framework wraps around OpenGL and
other open source C++ libraries. In many ways it’s very similar to Processing,
but with the obvious complications of dealing with C++ compilers. In the same
way as Processing, openFrameworks will search for your shader files in the data
folder, so don’t forget to copy the .frag files you want to use and change the
name when you load them.

void ofApp::draw(){
ofShader shader;
shader.load("","shader.frag");

shader.begin();
shader.setUniform1f("u_time", ofGetElapsedTimef());

20

https://processing.org/tutorials/pshader/
http://openframeworks.cc/

shader.setUniform2f("u_resolution", ofGetWidth(), ofGetHeight());
ofRect(0,0,ofGetWidth(), ofGetHeight());
shader.end();

}

If you want to use the full set of uniforms contain on the specs of GlslViewer
and GlslCanvas in a more simple way on OpenFrameworks I recomend using
the ofxShader addon which will also have support for multiple buffers, material
shaders, hotreload and automatic conversion for OpenGL ES in the Raspberry
Pi. And your code will be as simple as doing

//--
void ofApp::setup(){

ofDisableArbTex();

sandbox.allocate(ofGetWidth(), ofGetHeight());
sandbox.load("grayscott.frag");

}

//--
void ofApp::draw(){

sandbox.render();
sandbox.draw(0, 0);

}

For more information about shaders in openFrameworks go to this excellent
tutorial made by Joshua Noble.

2.10.4 In Blender

GlslTexture is an addon that allows you to programatically generate textures
using GLSL Shaders and is fully compatible with the rest of the sandboxes on
this chapter. How it works:

1. Operator Search: F3 (or SpaceBar depending on your setup). Type
GlslTexture

21

https://github.com/patriciogonzalezvivo/ofxshader
http://openframeworks.cc/ofBook/chapters/shaders.html
http://openframeworks.cc/ofBook/chapters/shaders.html
http://thefactoryfactory.com/
https://github.com/patriciogonzalezvivo/glslTexture

2. Change width and height size and Source file (which can be a path to
an external file).

3. Use the Image on your materials. The Image name will be based on the
name of the source file.

22

4. Go to the Text Editor (or an external editor if your source file is external)
and edit the shader. It will hot reload.

3 Algorithmic drawing
3.1 Shaping functions
This chapter could be named “Mr. Miyagi’s fence lesson.” Previously, we
mapped the normalized position of x and y to the red and green channels. Es-
sentially we made a function that takes a two dimensional vector (x and y) and
returns a four dimensional vector (r, g, b and a). But before we go further
transforming data between dimensions we need to start simpler… much simpler.
That means understanding how to make one dimensional functions. The more
energy and time you spend learning and mastering this, the stronger your shader

23

karate will be.

Figure 7: The Karate Kid (1984)

The following code structure is going to be our fence. In it, we visualize the
normalized value of the x coordinate (st.x) in two ways: one with brightness
(observe the nice gradient from black to white) and the other by plotting a green
line on top (in that case the x value is assigned directly to y). Don’t focus too
much on the plot function, we will go through it in more detail in a moment.

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

// Plot a line on Y using a value between 0.0-1.0
float plot(vec2 st) {

return smoothstep(0.02, 0.0, abs(st.y - st.x));
}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution;

float y = st.x;

vec3 color = vec3(y);

24

// Plot a line
float pct = plot(st);
color = (1.0-pct)*color+pct*vec3(0.0,1.0,0.0);

gl_FragColor = vec4(color,1.0);
}

Quick Note: The vec3 type constructor “understands” that you want to assign
the three color channels with the same value, while vec4 understands that you
want to construct a four dimensional vector with a three dimensional one plus
a fourth value (in this case the value that controls the alpha or opacity). See
for example lines 19 and 25 above.

This code is your fence; it’s important to observe and understand it. You will
come back over and over to this space between 0.0 and 1.0. You will master the
art of blending and shaping this line.

This one-to-one relationship between x and y (or the brightness) is known as
linear interpolation. From here we can use some mathematical functions to
shape the line. For example we can raise x to the power of 5 to make a curved
line.

// Author: Inigo Quiles
// Title: Expo

#ifdef GL_ES
precision mediump float;
#endif

#define PI 3.14159265359

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

float plot(vec2 st, float pct){
return smoothstep(pct-0.02, pct, st.y) -

smoothstep(pct, pct+0.02, st.y);
}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution;

float y = pow(st.x,5.0);

vec3 color = vec3(y);

25

float pct = plot(st,y);
color = (1.0-pct)*color+pct*vec3(0.0,1.0,0.0);

gl_FragColor = vec4(color,1.0);
}

Interesting, right? On line 22 try different exponents: 20.0, 2.0, 1.0, 0.0, 0.2
and 0.02 for example. Understanding this relationship between the value and
the exponent will be very helpful. Using these types of mathematical functions
here and there will give you expressive control over your code, a sort of data
acupuncture that let you control the flow of values.

pow() is a native function in GLSL and there are many others. Most of them
are accelerated at the level of the hardware, which means if they are used in the
right way and with discretion they will make your code faster.

Replace the power function on line 22. Try other ones like: exp(), log() and
sqrt(). Some of these functions are more interesting when you play with them
using PI. You can see on line 8 that I have defined a macro that will replace
any use of PI with the value 3.14159265359.

3.1.1 Step and Smoothstep

GLSL also has some unique native interpolation functions that are hardware
accelerated.

The step() interpolation receives two parameters. The first one is the limit or
threshold, while the second one is the value we want to check or pass. Any value
under the limit will return 0.0 while everything above the limit will return 1.0.

Try changing this threshold value on line 20 of the following code.

#ifdef GL_ES
precision mediump float;
#endif

#define PI 3.14159265359

uniform vec2 u_resolution;
uniform float u_time;

float plot(vec2 st, float pct){
return smoothstep(pct-0.02, pct, st.y) -

smoothstep(pct, pct+0.02, st.y);
}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution;

26

// Step will return 0.0 unless the value is over 0.5,
// in that case it will return 1.0
float y = step(0.5,st.x);

vec3 color = vec3(y);

float pct = plot(st,y);
color = (1.0-pct)*color+pct*vec3(0.0,1.0,0.0);

gl_FragColor = vec4(color,1.0);
}

The other unique function is known as smoothstep(). Given a range of two
numbers and a value, this function will interpolate the value between the defined
range. The two first parameters are for the beginning and end of the transition,
while the third is for the value to interpolate.

#ifdef GL_ES
precision mediump float;
#endif

#define PI 3.14159265359

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

float plot(vec2 st, float pct){
return smoothstep(pct-0.02, pct, st.y) -

smoothstep(pct, pct+0.02, st.y);
}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution;

// Smooth interpolation between 0.1 and 0.9
float y = smoothstep(0.1,0.9,st.x);

vec3 color = vec3(y);

float pct = plot(st,y);
color = (1.0-pct)*color+pct*vec3(0.0,1.0,0.0);

gl_FragColor = vec4(color,1.0);
}

In the previous example, on line 12, notice that we’ve been using smoothstep

27

to draw the green line on the plot() function. For each position along the x
axis this function makes a bump at a particular value of y. How? By connecting
two smoothstep() together. Take a look at the following function, replace it
for line 20 above and think of it as a vertical cut. The background does look
like a line, right?

float y = smoothstep(0.2,0.5,st.x) - smoothstep(0.5,0.8,st.x);

3.1.2 Sine and Cosine

When you want to use some math to animate, shape or blend values, there is
nothing better than being friends with sine and cosine.

These two basic trigonometric functions work together to construct circles that
are as handy as MacGyver’s Swiss army knife. It’s important to know how they
behave and in what ways they can be combined. In a nutshell, given an angle
(in radians) they will return the correct position of x (cosine) and y (sine) of a
point on the edge of a circle with a radius equal to 1. But, the fact that they
return normalized values (values between -1 and 1) in such a smooth way makes
them an incredible tool.

While it’s difficult to describe all the relationships between trigonometric func-
tions and circles, the above animation does a beautiful job of visually summa-
rizing these relationships.

Take a careful look at this sine wave. Note how the y values flow smoothly
between +1 and -1. As we saw in the time example in the previous chapter,
you can use this rhythmic behavior of sin() to animate properties. If you are
reading this example in a browser you will see that you can change the code

28

in the formula above to watch how the wave changes. (Note: don’t forget the
semicolon at the end of the lines.)

Try the following exercises and notice what happens:

• Add time (u_time) to x before computing the sin. Internalize that mo-
tion along x.

• Multiply x by PI before computing the sin. Note how the two phases
shrink so each cycle repeats every 2 integers.

• Multiply time (u_time) by x before computing the sin. See how the
frequency between phases becomes more and more compressed. Note
that u_time may have already become very large, making the graph hard
to read.

• Add 1.0 to sin(x). See how all the wave is displaced up and now all
values are between 0.0 and 2.0.

• Multiply sin(x) by 2.0. See how the amplitude doubles in size.

• Compute the absolute value (abs()) of sin(x). It looks like the trace of
a bouncing ball.

• Extract just the fraction part (fract()) of the resultant of sin(x).

• Add the higher integer (ceil()) and the smaller integer (floor()) of the
resultant of sin(x) to get a digital wave of 1 and -1 values.

3.1.3 Some extra useful functions

At the end of the last exercise we introduced some new functions. Now it’s
time to experiment with each one by uncommenting the lines below one at a
time. Get to know these functions and study how they behave. I know, you are
wondering… why? A quick google search on “generative art” will tell you. Keep
in mind that these functions are our fence. We are mastering the movement
in one dimension, up and down. Soon, it will be time for two, three and four
dimensions!

3.1.4 Advance shaping functions

Golan Levin has great documentation of more complex shaping functions that
are extraordinarily helpful. Porting them to GLSL is a really smart move, to
start building your own resource of snippets of code.

• Polynomial Shaping Functions: www.flong.com/archive/texts/code/shapers_poly

• Exponential Shaping Functions: www.flong.com/archive/texts/code/shapers_exp

• Circular & Elliptical Shaping Functions: www.flong.com/archive/texts/code/shapers_circ

• Bezier and Other Parametric Shaping Functions: www.flong.com/archive/texts/code/shapers_bez

29

http://www.flong.com/
http://www.flong.com/archive/texts/code/shapers_poly/
http://www.flong.com/archive/texts/code/shapers_exp/
http://www.flong.com/archive/texts/code/shapers_circ/
http://www.flong.com/archive/texts/code/shapers_bez/

Figure 8: Anthony Mattox (2009)

Like chefs that collect spices and exotic ingredients, digital artists and creative
coders have a particular love of working on their own shaping functions.

Iñigo Quiles has a great collection of useful functions. After reading this article
take a look at the following translation of these functions to GLSL. Pay attention
to the small changes required, like putting the “.” (dot) on floating point numbers
and using the GLSL name for C functions; for example instead of powf() use
pow():

To keep your motivation up, here is an elegant example (made by Danguafer)
of mastering the shaping-functions karate.

In the Next >> chapter we will start using our new moves. First with mixing
colors and then drawing shapes.

3.1.4.1 Exercise

Take a look at the following table of equations made by Kynd. See how he is
combining functions and their properties to control the values between 0.0 and
1.0. Now it’s time for you to practice by replicating these functions. Remember
the more you practice the better your karate will be.

3.1.4.2 For your toolbox

Here are some tools that will make it easier for you to visualize these types of
functions.

• Grapher: if you have a MacOS computer, type grapher in your spotlight
and you’ll be able to use this super handy tool.

30

http://www.iquilezles.org/
http://www.iquilezles.org/www/articles/functions/functions.htm
http://www.iquilezles.org/www/articles/functions/functions.htm
https://www.shadertoy.com/user/Danguafer
http://www.kynd.info/log/

Figure 9: Kynd - www.flickr.com/photos/kynd/9546075099/ (2013)

Figure 10: OS X Grapher (2004)

31

• GraphToy: once again Iñigo Quilez made a tool to visualize GLSL func-
tions in WebGL.

Figure 11: Iñigo Quilez - GraphToy (2010)

• Shadershop: this amazing tool created by Toby Schachman will teach you
how to construct complex functions in an incredible visual and intuitive
way.

3.2 Colors
We haven’t much of a chance to talk about GLSL vector types. Before going
further it’s important to learn more about these variables and the subject of
colors is a great way to find out more about them.

If you are familiar with object oriented programming paradigms you’ve probably
noticed that we have been accessing the data inside the vectors like any regular
C-like struct.

vec3 red = vec3(1.0,0.0,0.0);
red.x = 1.0;
red.y = 0.0;
red.z = 0.0;

Defining color using an x, y and z notation can be confusing and misleading,
right? That’s why there are other ways to access this same information, but
with different names. The values of .x, .y and .z can also be called .r, .g and
.b, and .s, .t and .p. (.s, .t and .p are usually used for spatial coordinates
of a texture, which we’ll see in a later chapter.) You can also access the data in
a vector by using the index position, [0], [1] and [2].

32

http://www.iquilezles.org/apps/graphtoy/
http://www.iquilezles.org
http://tobyschachman.com/Shadershop/
http://tobyschachman.com/

Figure 12: Toby Schachman - Shadershop (2014)

The following lines show all the ways to access the same data:

vec4 vector;
vector[0] = vector.r = vector.x = vector.s;
vector[1] = vector.g = vector.y = vector.t;
vector[2] = vector.b = vector.z = vector.p;
vector[3] = vector.a = vector.w = vector.q;

These different ways of pointing to the variables inside a vector are just nomen-
clatures designed to help you write clear code. This flexibility embedded in
shading language is a door for you to start thinking interchangably about color
and space coordinates.

Another great feature of vector types in GLSL is that the properties can be
combined in any order you want, which makes it easy to cast and mix values.
This ability is called swizzle.

vec3 yellow, magenta, green;

// Making Yellow
yellow.rg = vec2(1.0); // Assigning 1. to red and green channels
yellow[2] = 0.0; // Assigning 0. to blue channel

// Making Magenta
magenta = yellow.rbg; // Assign the channels with green and blue swapped

33

Figure 13: Paul Klee - Color Chart (1931)

34

// Making Green
green.rgb = yellow.bgb; // Assign the blue channel of Yellow (0) to red and blue channels

3.2.0.1 For your toolbox

You might not be used to picking colors with numbers - it can be very counter-
intuitive. Lucky for you, there are a lot of smart programs that make this job
easy. Find one that fits your needs and then train it to deliver colors in vec3
or vec4 format. For example, here are the templates I use on Spectrum:

vec3({{rn}},{{gn}},{{bn}})
vec4({{rn}},{{gn}},{{bn}},1.0)

3.2.1 Mixing color

Now that you know how colors are defined, it’s time to integrate this with our
previous knowledge. In GLSL there is a very useful function, mix(), that lets
you mix two values in percentages. Can you guess what the percentage range
is? Yes, values between 0.0 and 1.0! Which is perfect for you, after those long
hours practicing your karate moves with the fence - it is time to use them!

35

http://www.eigenlogik.com/spectrum/mac

Check the following code at line 18 and see how we are using the absolute values
of a sin wave over time to mix colorA and colorB.

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform float u_time;

vec3 colorA = vec3(0.149,0.141,0.912);
vec3 colorB = vec3(1.000,0.833,0.224);

void main() {
vec3 color = vec3(0.0);

float pct = abs(sin(u_time));

36

// Mix uses pct (a value from 0-1) to
// mix the two colors
color = mix(colorA, colorB, pct);

gl_FragColor = vec4(color,1.0);
}

Show off your skills by:

• Make an expressive transition between colors. Think of a particular emo-
tion. What color seems most representative of it? How does it appear?
How does it fade away? Think of another emotion and the matching
color for it. Change the beginning and ending color of the above code to
match those emotions. Then animate the transition using shaping func-
tions. Robert Penner developed a series of popular shaping functions for
computer animation known as easing functions, you can use this example
as research and inspiration but the best result will come from making your
own transitions.

3.2.2 Playing with gradients

The mix() function has more to offer. Instead of a single float, we can pass
a variable type that matches the two first arguments, in our case a vec3. By
doing that we gain control over the mixing percentages of each individual color
channel, r, g and b.

37

http://easings.net/
../edit.php#06/easing.frag

Take a look at the following example. Like the examples in the previous chapter,
we are hooking the transition to the normalized x coordinate and visualizing it
with a line. Right now all the channels go along the same line.

Now, uncomment line number 25 and watch what happens. Then try uncom-
menting lines 26 and 27. Remember that the lines visualize the amount of
colorA and colorB to mix per channel.

#ifdef GL_ES
precision mediump float;
#endif

#define PI 3.14159265359

38

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

vec3 colorA = vec3(0.149,0.141,0.912);
vec3 colorB = vec3(1.000,0.833,0.224);

float plot (vec2 st, float pct){
return smoothstep(pct-0.01, pct, st.y) -

smoothstep(pct, pct+0.01, st.y);
}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

vec3 pct = vec3(st.x);

// pct.r = smoothstep(0.0,1.0, st.x);
// pct.g = sin(st.x*PI);
// pct.b = pow(st.x,0.5);

color = mix(colorA, colorB, pct);

// Plot transition lines for each channel
color = mix(color,vec3(1.0,0.0,0.0),plot(st,pct.r));
color = mix(color,vec3(0.0,1.0,0.0),plot(st,pct.g));
color = mix(color,vec3(0.0,0.0,1.0),plot(st,pct.b));

gl_FragColor = vec4(color,1.0);
}

You probably recognize the three shaping functions we are using on lines 25
to 27. Play with them! It’s time for you to explore and show off your skills
from the previous chapter and make interesting gradients. Try the following
exercises:

• Compose a gradient that resembles a William Turner sunset

• Animate a transition between a sunrise and sunset using u_time.

• Can you make a rainbow using what we have learned so far?

• Use the step() function to create a colorful flag.

39

Figure 14: William Turner - The Fighting Temeraire (1838)

40

3.2.3 HSB

We can’t talk about color without speaking about color space. As you probably
know there are different ways to organize color besides by red, green and blue
channels.

HSB stands for Hue, Saturation and Brightness (or Value) and is a more intuitive
and useful organization of colors. Take a moment to read the rgb2hsv() and
hsv2rgb() functions in the following code.

By mapping the position on the x axis to the Hue and the position on the y
axis to the Brightness, we obtain a nice spectrum of visible colors. This spatial
distribution of color can be very handy; it’s more intuitive to pick a color with
HSB than with RGB.

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform float u_time;

vec3 rgb2hsb(in vec3 c){
vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
vec4 p = mix(vec4(c.bg, K.wz),

vec4(c.gb, K.xy),
step(c.b, c.g));

vec4 q = mix(vec4(p.xyw, c.r),
vec4(c.r, p.yzx),
step(p.x, c.r));

float d = q.x - min(q.w, q.y);
float e = 1.0e-10;
return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)),

d / (q.x + e),
q.x);

}

// Function from Iñigo Quiles
// https://www.shadertoy.com/view/MsS3Wc
vec3 hsb2rgb(in vec3 c){

vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0),
6.0)-3.0)-1.0,

0.0,
1.0);

rgb = rgb*rgb*(3.0-2.0*rgb);
return c.z * mix(vec3(1.0), rgb, c.y);

}

41

http://en.wikipedia.org/wiki/HSL_and_HSV

void main(){
vec2 st = gl_FragCoord.xy/u_resolution;
vec3 color = vec3(0.0);

// We map x (0.0 - 1.0) to the hue (0.0 - 1.0)
// And the y (0.0 - 1.0) to the brightness
color = hsb2rgb(vec3(st.x,1.0,st.y));

gl_FragColor = vec4(color,1.0);
}

3.2.4 HSB in polar coordinates

HSB was originally designed to be represented in polar coordinates (based on
the angle and radius) instead of cartesian coordinates (based on x and y). To
map our HSB function to polar coordinates we need to obtain the angle and
distance from the center of the billboard to the pixel coordinate. For that we
will use the length() function and atan(y,x) (which is the GLSL version of
the commonly used atan2(y,x)).

When using vector and trigonometric functions, vec2, vec3 and vec4 are treated
as vectors even when they represent colors. We will start treating colors and
vectors similarly, in fact you will come to find this conceptual flexibility very
empowering.

Note: If you were wondering, there are more geometric functions besides
length like: distance(), dot(), cross, normalize(), faceforward(),
reflect() and refract(). Also GLSL has special vector relational
functions such as: lessThan(), lessThanEqual(), greaterThan(),
greaterThanEqual(), equal() and notEqual().

Once we obtain the angle and length we need to “normalize” their values to
the range between 0.0 to 1.0. On line 27, atan(y,x) will return an angle in
radians between -PI and PI (-3.14 to 3.14), so we need to divide this number by
TWO_PI (defined at the top of the code) to get values between -0.5 to 0.5, which
by simple addition we change to the desired range of 0.0 to 1.0. The radius
will return a maximum of 0.5 (because we are calculating the distance from the
center of the viewport) so we need to double this range (by multiplying by two)
to get a maximum of 1.0.

As you can see, our game here is all about transforming and mapping ranges to
the 0.0 to 1.0 that we like.

#ifdef GL_ES
precision mediump float;
#endif

42

#define TWO_PI 6.28318530718

uniform vec2 u_resolution;
uniform float u_time;

// Function from Iñigo Quiles
// https://www.shadertoy.com/view/MsS3Wc
vec3 hsb2rgb(in vec3 c){

vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0),
6.0)-3.0)-1.0,

0.0,
1.0);

rgb = rgb*rgb*(3.0-2.0*rgb);
return c.z * mix(vec3(1.0), rgb, c.y);

}

void main(){
vec2 st = gl_FragCoord.xy/u_resolution;
vec3 color = vec3(0.0);

// Use polar coordinates instead of cartesian
vec2 toCenter = vec2(0.5)-st;
float angle = atan(toCenter.y,toCenter.x);
float radius = length(toCenter)*2.0;

// Map the angle (-PI to PI) to the Hue (from 0 to 1)
// and the Saturation to the radius
color = hsb2rgb(vec3((angle/TWO_PI)+0.5,radius,1.0));

gl_FragColor = vec4(color,1.0);
}

Try the following exercises:

• Modify the polar example to get a spinning color wheel, just like the
waiting mouse icon.

• Use a shaping function together with the conversion function from HSB
to RGB to expand a particular hue value and shrink the rest.

• If you look closely at the color wheel used on color pickers (see the image
below), they use a different spectrum according to RYB color space. For
example, the opposite color of red should be green, but in our example it
is cyan. Can you find a way to fix that in order to look exactly like the
following image? [Hint: this is a great moment to use shaping functions.]

43

Figure 15: William Home Lizars - Red, blue and yellow spectra, with the solar
spectrum (1834)

44

• Read Josef Albers’ book Interaction of Color and use the following shaders
examples as practice.

3.2.4.1 Note about functions and arguments

Before jumping to the next chapter let’s stop and rewind. Go back and take
look at the functions in previous examples. You will notice in before the type of
the arguments. This is a qualifier and in this case it specifies that the variable
is read only. In future examples we will see that it is also possible to define
arguments as out or inout. This last one, inout, is conceptually similar to
passing an argument by reference which will give us the possibility to modify a
passed variable.

int newFunction(in vec4 aVec4, // read-only
out vec3 aVec3, // write-only
inout int aInt); // read-write

You may not believe it but now we have all the elements to make cool drawings.
In the next chapter we will learn how to combine all our tricks to make geometric
forms by blending the space. Yep… blending the space.

3.3 Shapes
Finally! We have been building skills for this moment! You have learned most
of the GLSL foundations, types and functions. You have practiced your shaping
equations over and over. Now is the time to put it all together. You are up
for this challenge! In this chapter you’ll learn how to draw simple shapes in a
parallel procedural way.

3.3.1 Rectangle

Imagine we have grid paper like we used in math classes and our homework is
to draw a square. The paper size is 10x10 and the square is supposed to be 8x8.
What will you do?

45

http://www.goodreads.com/book/show/111113.Interaction_of_Color
http://www.shaderific.com/glsl-qualifiers/#inputqualifier

Figure 16: Alice Hubbard, Providence, United States, ca. 1892. Photo: Zind-
man/Freemont.

You’d paint everything except the first and last rows and the first and last
column, right?

How does this relate to shaders? Each little square of our grid paper is a
thread (a pixel). Each little square knows its position, like the coordinates of

46

a chess board. In previous chapters we mapped x and y to the red and green
color channels, and we learned how to use the narrow two dimensional territory
between 0.0 and 1.0. How can we use this to draw a centered square in the
middle of our billboard?

Let’s start by sketching pseudocode that uses if statements over the spatial
field. The principles to do this are remarkably similar to how we think of the
grid paper scenario.

if ((X GREATER THAN 1) AND (Y GREATER THAN 1))
paint white

else
paint black

Now that we have a better idea of how this will work, let’s replace the if
statement with step(), and instead of using 10x10 let’s use normalized values
between 0.0 and 1.0:

uniform vec2 u_resolution;

void main(){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

// Each result will return 1.0 (white) or 0.0 (black).
float left = step(0.1,st.x); // Similar to (X greater than 0.1)
float bottom = step(0.1,st.y); // Similar to (Y greater than 0.1)

// The multiplication of left*bottom will be similar to the logical AND.
color = vec3(left * bottom);

gl_FragColor = vec4(color,1.0);
}

The step() function will turn every pixel below 0.1 to black (vec3(0.0)) and
the rest to white (vec3(1.0)) . The multiplication between left and bottom
works as a logical AND operation, where both must be 1.0 to return 1.0 . This
draws two black lines, one on the bottom and the other on the left side of the
canvas.

47

In the previous code we repeat the structure for each axis (left and bottom).
We can save some lines of code by passing two values directly to step() instead
of one. That looks like this:

vec2 borders = step(vec2(0.1),st);
float pct = borders.x * borders.y;

So far, we’ve only drawn two borders (bottom-left) of our rectangle. Let’s do
the other two (top-right). Check out the following code:

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;

48

uniform float u_time;

void main(){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

// bottom-left
vec2 bl = step(vec2(0.1),st);
float pct = bl.x * bl.y;

// top-right
// vec2 tr = step(vec2(0.1),1.0-st);
// pct *= tr.x * tr.y;

color = vec3(pct);

gl_FragColor = vec4(color,1.0);
}

Uncomment lines 21-22 and see how we invert the st coordinates and repeat
the same step() function. That way the vec2(0.0,0.0) will be in the top
right corner. This is the digital equivalent of flipping the page and repeating
the previous procedure.

49

Take note that in lines 18 and 22 all of the sides are being multiplied together.
This is equivalent to writing:

vec2 bl = step(vec2(0.1),st); // bottom-left
vec2 tr = step(vec2(0.1),1.0-st); // top-right
color = vec3(bl.x * bl.y * tr.x * tr.y);

Interesting right? This technique is all about using step() and multiplication
for logical operations and flipping the coordinates.

Before going forward, try the following exercises:

• Change the size and proportions of the rectangle.

• Experiment with the same code but using smoothstep() instead of
step(). Note that by changing values, you can go from blurred edges to
elegant smooth borders.

• Do another implementation that uses floor().

• Choose the implementation you like the most and make a function of it

50

that you can reuse in the future. Make your function flexible and efficient.

• Make another function that just draws the outline of a rectangle.

• How do you think you can move and place different rectangles in the
same billboard? If you figure out how, show off your skills by making
a composition of rectangles and colors that resembles a Piet Mondrian
painting.

Figure 17: Piet Mondrian - Tableau (1921)

3.3.2 Circles

It’s easy to draw squares on grid paper and rectangles on cartesian coordinates,
but circles require another approach, especially since we need a “per-pixel” al-
gorithm. One solution is to re-map the spatial coordinates so that we can use a
step() function to draw a circle.

51

http://en.wikipedia.org/wiki/Piet_Mondrian

How? Let’s start by going back to math class and the grid paper, where we
opened a compass to the radius of a circle, pressed one of the compass points
at the center of the circle and then traced the edge of the circle with a simple
spin.

Translating this to a shader where each square on the grid paper is a pixel
implies asking each pixel (or thread) if it is inside the area of the circle. We do
this by computing the distance from the pixel to the center of the circle.

There are several ways to calculate that distance. The easiest one uses the

52

distance() function, which internally computes the length() of the difference
between two points (in our case the pixel coordinate and the center of the
canvas). The length() function is nothing but a shortcut of the hypotenuse
equation that uses square root (sqrt()) internally.

You can use distance(), length() or sqrt() to calculate the distance to the
center of the billboard. The following code contains these three functions and
the non-surprising fact that each one returns exactly same result.

• Comment and uncomment lines to try the different ways to get the same
result.

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

void main(){
vec2 st = gl_FragCoord.xy/u_resolution;

float pct = 0.0;

// a. The DISTANCE from the pixel to the center
pct = distance(st,vec2(0.5));

// b. The LENGTH of the vector
// from the pixel to the center
// vec2 toCenter = vec2(0.5)-st;
// pct = length(toCenter);

// c. The SQUARE ROOT of the vector
// from the pixel to the center
// vec2 tC = vec2(0.5)-st;
// pct = sqrt(tC.x*tC.x+tC.y*tC.y);

vec3 color = vec3(pct);

gl_FragColor = vec4(color, 1.0);
}

53

http://en.wikipedia.org/wiki/Hypotenuse
http://en.wikipedia.org/wiki/Hypotenuse

In the previous example we map the distance to the center of the billboard
to the color brightness of the pixel. The closer a pixel is to the center, the
lower (darker) value it has. Notice that the values don’t get too high because
from the center (vec2(0.5, 0.5)) the maximum distance barely goes over 0.5.
Contemplate this map and think:

• What you can infer from it?

• How we can use this to draw a circle?

• Modify the above code in order to contain the entire circular gradient
inside the canvas.

3.3.3 Distance field

We can also think of the above example as an altitude map, where darker implies
taller. The gradient shows us something similar to the pattern made by a cone.
Imagine yourself on the top of that cone. The horizontal distance to the edge
of the cone is 0.5. This will be constant in all directions. By choosing where to
“cut” the cone you will get a bigger or smaller circular surface.

Basically we are using a re-interpretation of the space (based on the distance to
the center) to make shapes. This technique is known as a “distance field” and

54

is used in different ways from font outlines to 3D graphics.

Try the following exercises:

• Use step() to turn everything above 0.5 to white and everything below
to 0.0.

• Inverse the colors of the background and foreground.

• Using smoothstep(), experiment with different values to get nice smooth
borders on your circle.

• Once you are happy with an implementation, make a function of it that
you can reuse in the future.

• Add color to the circle.

• Can you animate your circle to grow and shrink, simulating a beating
heart? (You can get some inspiration from the animation in the previous
chapter.)

• What about moving this circle? Can you move it and place different circles
in a single billboard?

• What happens if you combine distances fields together using different func-
tions and operations?

pct = distance(st,vec2(0.4)) + distance(st,vec2(0.6));
pct = distance(st,vec2(0.4)) * distance(st,vec2(0.6));
pct = min(distance(st,vec2(0.4)),distance(st,vec2(0.6)));
pct = max(distance(st,vec2(0.4)),distance(st,vec2(0.6)));
pct = pow(distance(st,vec2(0.4)),distance(st,vec2(0.6)));

• Make three compositions using this technique. If they are animated, even
better!

3.3.3.1 For your tool box

In terms of computational power the sqrt() function - and all the functions
that depend on it - can be expensive. Here is another way to create a circular
distance field by using dot() product.

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

55

float circle(in vec2 _st, in float _radius){
vec2 dist = _st-vec2(0.5);

return 1.-smoothstep(_radius-(_radius*0.01),
_radius+(_radius*0.01),
dot(dist,dist)*4.0);

}

void main(){
vec2 st = gl_FragCoord.xy/u_resolution.xy;

vec3 color = vec3(circle(st,0.9));

gl_FragColor = vec4(color, 1.0);
}

3.3.4 Useful properties of a Distance Field

Figure 18: Zen garden

Distance fields can be used to draw almost everything. Obviously the more
complex a shape is, the more complicated its equation will be, but once you
have the formula to make distance fields of a particular shape it is very easy
to combine and/or apply effects to it, like smooth edges and multiple outlines.
Because of this, distance fields are popular in font rendering, like Mapbox GL
Labels, Matt DesLauriers Material Design Fonts and as is described on Chapter
7 of iPhone 3D Programming, O’Reilly.

Take a look at the following code.

#ifdef GL_ES
precision mediump float;

56

https://blog.mapbox.com/drawing-text-with-signed-distance-fields-in-mapbox-gl-b0933af6f817
https://blog.mapbox.com/drawing-text-with-signed-distance-fields-in-mapbox-gl-b0933af6f817
https://twitter.com/mattdesl
http://mattdesl.svbtle.com/material-design-on-the-gpu
http://chimera.labs.oreilly.com/books/1234000001814/ch07.html#ch07_id36000921
http://chimera.labs.oreilly.com/books/1234000001814/ch07.html#ch07_id36000921

#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

void main(){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st.x *= u_resolution.x/u_resolution.y;
vec3 color = vec3(0.0);
float d = 0.0;

// Remap the space to -1. to 1.
st = st *2.-1.;

// Make the distance field
d = length(abs(st)-.3);
// d = length(min(abs(st)-.3,0.));
// d = length(max(abs(st)-.3,0.));

// Visualize the distance field
gl_FragColor = vec4(vec3(fract(d*10.0)),1.0);

// Drawing with the distance field
// gl_FragColor = vec4(vec3(step(.3,d)),1.0);
// gl_FragColor = vec4(vec3(step(.3,d) * step(d,.4)),1.0);
// gl_FragColor = vec4(vec3(smoothstep(.3,.4,d)* smoothstep(.6,.5,d)) ,1.0);

}

We start by moving the coordinate system to the center and shrinking it in half
in order to remap the position values between -1 and 1. Also on line 24 we are
visualizing the distance field values using a fract() function making it easy to
see the pattern they create. The distance field pattern repeats over and over
like rings in a Zen garden.

Let’s take a look at the distance field formula on line 19. There we are calculat-
ing the distance to the position on (.3,.3) or vec3(.3) in all four quadrants
(that’s what abs() is doing there).

If you uncomment line 20, you will note that we are combining the distances to
these four points using the min() to zero. The result produces an interesting
new pattern.

Now try uncommenting line 21; we are doing the same but using the max()
function. The result is a rectangle with rounded corners. Note how the rings of
the distance field get smoother the further away they get from the center.

Finish uncommenting lines 27 to 29 one by one to understand the different uses

57

of a distance field pattern.

3.3.5 Polar shapes

Figure 19: Robert Mangold - Untitled (2008)

In the chapter about color we map the cartesian coordinates to polar coordinates
by calculating the radius and angles of each pixel with the following formula:

vec2 pos = vec2(0.5)-st;
float r = length(pos)*2.0;
float a = atan(pos.y,pos.x);

We use part of this formula at the beginning of the chapter to draw a circle.
We calculated the distance to the center using length(). Now that we know
about distance fields we can learn another way of drawing shapes using polar
coordinates.

58

This technique is a little restrictive but very simple. It consists of changing the
radius of a circle depending on the angle to achieve different shapes. How does
the modulation work? Yes, using shaping functions!

Below you will find the same functions in the cartesian graph and in a polar co-
ordinates shader example (between lines 21 and 25). Uncomment the functions
one-by-one, paying attention the relationship between one coordinate system
and the other.

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

void main(){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

vec2 pos = vec2(0.5)-st;

float r = length(pos)*2.0;
float a = atan(pos.y,pos.x);

float f = cos(a*3.);
// f = abs(cos(a*3.));
// f = abs(cos(a*2.5))*.5+.3;
// f = abs(cos(a*12.)*sin(a*3.))*.8+.1;
// f = smoothstep(-.5,1., cos(a*10.))*0.2+0.5;

color = vec3(1.-smoothstep(f,f+0.02,r));

gl_FragColor = vec4(color, 1.0);
}

Try to:

• Animate these shapes.
• Combine different shaping functions to cut holes in the shape to make

flowers, snowflakes and gears.
• Use the plot() function we were using in the Shaping Functions Chapter

to draw just the contour.

59

3.3.6 Combining powers

Now that we’ve learned how to modulate the radius of a circle according to the
angle using the atan() to draw different shapes, we can learn how use atan()
with distance fields and apply all the tricks and effects possible with distance
fields.

The trick will use the number of edges of a polygon to construct the distance field
using polar coordinates. Check out the following code from Andrew Baldwin.

#ifdef GL_ES
precision mediump float;
#endif

#define PI 3.14159265359
#define TWO_PI 6.28318530718

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

// Reference to
// http://thndl.com/square-shaped-shaders.html

void main(){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st.x *= u_resolution.x/u_resolution.y;
vec3 color = vec3(0.0);
float d = 0.0;

// Remap the space to -1. to 1.
st = st *2.-1.;

// Number of sides of your shape
int N = 3;

// Angle and radius from the current pixel
float a = atan(st.x,st.y)+PI;
float r = TWO_PI/float(N);

// Shaping function that modulate the distance
d = cos(floor(.5+a/r)*r-a)*length(st);

color = vec3(1.0-smoothstep(.4,.41,d));
// color = vec3(d);

gl_FragColor = vec4(color,1.0);

60

http://thndl.com/square-shaped-shaders.html
https://twitter.com/baldand

}

• Using this example, make a function that inputs the position and number
of corners of a desired shape and returns a distance field value.

• Mix distance fields together using min() and max().

• Choose a geometric logo to replicate using distance fields.

Congratulations! You have made it through the rough part! Take a break and
let these concepts settle - drawing simple shapes in Processing is easy but not
here. In shader-land drawing shapes is twisted, and it can be exhausting to
adapt to this new paradigm of coding.

Down at the end of this chapter you will find a link to PixelSpirit Deck this
deck of cards will help you learn new SDF functions, compose them into your
designs and use on your shaders. The deck has a progressive learning curve, so
taking one card a day and working on it will push and challenge your skills for
months.

Now that you know how to draw shapes I’m sure new ideas will pop into your
mind. In the following chapter you will learn how to move, rotate and scale
shapes. This will allow you to make compositions!

3.4 2D Matrices
3.4.1 Translate

In the previous chapter we learned how to make some shapes - the trick to
moving those shapes is to move the coordinate system itself. We can achieve
that by simply adding a vector to the st variable that contains the location of
each fragment. This causes the whole space coordinate system to move.

This is easier to see than to explain, so to see for yourself:

61

https://patriciogonzalezvivo.github.io/PixelSpiritDeck/

• Uncomment line 35 of the code below to see how the space itself moves
around.

// Author @patriciogv (patriciogonzalezvivo.com) - 2015

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform float u_time;

float box(in vec2 _st, in vec2 _size){
_size = vec2(0.5) - _size*0.5;
vec2 uv = smoothstep(_size,

_size+vec2(0.001),
_st);

uv *= smoothstep(_size,
_size+vec2(0.001),
vec2(1.0)-_st);

return uv.x*uv.y;
}

float cross(in vec2 _st, float _size){
return box(_st, vec2(_size,_size/4.)) +

box(_st, vec2(_size/4.,_size));
}

void main(){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

// To move the cross we move the space
vec2 translate = vec2(cos(u_time),sin(u_time));
st += translate*0.35;

// Show the coordinates of the space on the background
// color = vec3(st.x,st.y,0.0);

// Add the shape on the foreground
color += vec3(cross(st,0.25));

gl_FragColor = vec4(color,1.0);
}

Now try the following exercise:

62

• Using u_time together with the shaping functions move the small cross
around in an interesting way. Search for a specific quality of motion you are
interested in and try to make the cross move in the same way. Recording
something from the “real world” first might be useful - it could be the
coming and going of waves, a pendulum movement, a bouncing ball, a car
accelerating, a bicycle stopping.

3.4.2 Rotations

To rotate objects we also need to move the entire space system. For that we are
going to use a matrix. A matrix is an organized set of numbers in columns and
rows. Vectors are multiplied by matrices following a precise set of rules in order
to modify the values of the vector in a particular way.

GLSL has native support for two, three and four dimensional matrices: mat2
(2x2), mat3 (3x3) and mat4 (4x4). GLSL also supports matrix multiplication
(*) and a matrix specific function (matrixCompMult()).

Based on how matrices behave it’s possible to construct matrices to produce
specific behaviors. For example we can use a matrix to translate a vector:

63

http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
https://en.wikipedia.org/wiki/Matrix

More interestingly, we can use a matrix to rotate the coordinate system:

Take a look at the following code for a function that constructs a 2D rotation
matrix. This function follows the above formula for two dimensional vectors to
rotate the coordinates around the vec2(0.0) point.

mat2 rotate2d(float _angle){
return mat2(cos(_angle),-sin(_angle),

sin(_angle),cos(_angle));
}

According to the way we’ve been drawing shapes, this is not exactly what we
want. Our cross shape is drawn in the center of the canvas which corresponds to
the position vec2(0.5). So, before we rotate the space we need to move shape
from the center to the vec2(0.0) coordinate, rotate the space, then finally
move it back to the original place.

That looks like the following code:

// Author @patriciogv (patriciogonzalezvivo.com) - 2015

#ifdef GL_ES
precision mediump float;
#endif

#define PI 3.14159265359

uniform vec2 u_resolution;
uniform float u_time;

64

http://en.wikipedia.org/wiki/Rotation_matrix

mat2 rotate2d(float _angle){
return mat2(cos(_angle),-sin(_angle),

sin(_angle),cos(_angle));
}

float box(in vec2 _st, in vec2 _size){
_size = vec2(0.5) - _size*0.5;
vec2 uv = smoothstep(_size,

_size+vec2(0.001),
_st);

uv *= smoothstep(_size,
_size+vec2(0.001),
vec2(1.0)-_st);

return uv.x*uv.y;
}

float cross(in vec2 _st, float _size){
return box(_st, vec2(_size,_size/4.)) +

box(_st, vec2(_size/4.,_size));
}

void main(){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

// move space from the center to the vec2(0.0)
st -= vec2(0.5);
// rotate the space
st = rotate2d(sin(u_time)*PI) * st;
// move it back to the original place
st += vec2(0.5);

// Show the coordinates of the space on the background
// color = vec3(st.x,st.y,0.0);

// Add the shape on the foreground
color += vec3(cross(st,0.4));

gl_FragColor = vec4(color,1.0);
}

Try the following exercises:

• Uncomment line 45 of above code and pay attention to what happens.

• Comment the translations before and after the rotation, on lines 37 and

65

39, and observe the consequences.

• Use rotations to improve the animation you simulated in the translation
exercise.

3.4.3 Scale

We’ve seen how matrices are used to translate and rotate objects in space. (Or
more precisely to transform the coordinate system to rotate and move the ob-
jects.) If you’ve used 3D modeling software or the push and pop matrix functions
in Processing, you will know that matrices can also be used to scale the size of
an object.

Following the previous formula, we can figure out how to make a 2D scaling
matrix:

mat2 scale(vec2 _scale){
return mat2(_scale.x,0.0,

0.0,_scale.y);
}

// Author @patriciogv (patriciogonzalezvivo.com) - 2015

#ifdef GL_ES
precision mediump float;
#endif

#define PI 3.14159265359

uniform vec2 u_resolution;
uniform float u_time;

mat2 scale(vec2 _scale){
return mat2(_scale.x,0.0,

0.0,_scale.y);
}

float box(in vec2 _st, in vec2 _size){
_size = vec2(0.5) - _size*0.5;
vec2 uv = smoothstep(_size,

_size+vec2(0.001),
_st);

uv *= smoothstep(_size,

66

_size+vec2(0.001),
vec2(1.0)-_st);

return uv.x*uv.y;
}

float cross(in vec2 _st, float _size){
return box(_st, vec2(_size,_size/4.)) +

box(_st, vec2(_size/4.,_size));
}

void main(){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

st -= vec2(0.5);
st = scale(vec2(sin(u_time)+1.0)) * st;
st += vec2(0.5);

// Show the coordinates of the space on the background
// color = vec3(st.x,st.y,0.0);

// Add the shape on the foreground
color += vec3(cross(st,0.2));

gl_FragColor = vec4(color,1.0);
}

Try the following exercises to understand more deeply how this works.

• Uncomment line 42 of above code to see the space coordinate being scaled.

• See what happens when you comment the translations before and after
the scaling on lines 37 and 39.

• Try combining a rotation matrix together with a scale matrix. Be aware
that the order matters. Multiply by the matrix first and then multiply
the vectors.

• Now that you know how to draw different shapes, and move, rotate and
scale them, it’s time to make a nice composition. Design and construct a
fake UI or HUD (heads up display). Use the following ShaderToy example
by Ndel for inspiration and reference.

3.4.4 Other uses for matrices: YUV color

YUV is a color space used for analog encoding of photos and videos that takes
into account the range of human perception to reduce the bandwidth of chromi-
nance components.

67

https://www.pinterest.com/patriciogonzv/huds/
https://www.shadertoy.com/user/ndel
http://en.wikipedia.org/wiki/YUV

The following code is an interesting opportunity to use matrix operations in
GLSL to transform colors from one mode to another.

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com
#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform float u_time;

// YUV to RGB matrix
mat3 yuv2rgb = mat3(1.0, 0.0, 1.13983,

1.0, -0.39465, -0.58060,
1.0, 2.03211, 0.0);

// RGB to YUV matrix
mat3 rgb2yuv = mat3(0.2126, 0.7152, 0.0722,

-0.09991, -0.33609, 0.43600,
0.615, -0.5586, -0.05639);

void main(){
vec2 st = gl_FragCoord.xy/u_resolution;
vec3 color = vec3(0.0);

// UV values goes from -1 to 1
// So we need to remap st (0.0 to 1.0)
st -= 0.5; // becomes -0.5 to 0.5
st *= 2.0; // becomes -1.0 to 1.0

// we pass st as the y & z values of
// a three dimensional vector to be
// properly multiply by a 3x3 matrix
color = yuv2rgb * vec3(0.5, st.x, st.y);

gl_FragColor = vec4(color,1.0);
}

As you can see we are treating colors as vectors by multiplying them with
matrices. In that way we “move” the values around.

In this chapter we’ve learned how to use matrix transformations to move, rotate
and scale vectors. These transformations will be essential for making composi-
tions out of the shapes we learned about in the previous chapter. In the next
chapter we’ll apply all we’ve learned to make beautiful procedural patterns. You
will find that coding repetition and variation can be an exciting practice.

68

3.5 Patterns
Since shader programs are executed by pixel-by-pixel no matter how much you
repeat a shape the number of calculations stays constant. This means that
fragment shaders are particulary suitable for tile patterns.

In this chapter we are going to apply what we’ve learned so far and repeat
it along a canvas. Like in previous chapters, our strategy will be based on
multiplying the space coordinates (between 0.0 and 1.0), so that the shapes we
draw between the values 0.0 and 1.0 will be repeated to make a grid.

“The grid provides a framework within which human intuition and invention can
operate and that it can subvert. Within the chaos of nature patterns provide
a constrast and promise of order. From early patterns on pottery to geometric
mosaics in Roman baths, people have long used grids to enhance their lives with
decoration.” 10 PRINT, Mit Press, (2013)

First let’s remember the fract() function. It returns the fractional part of a
number, making fract() in essence the modulo of one (mod(x,1.0)). In other
words, fract() returns the number after the floating point. Our normalized
coordinate system variable (st) already goes from 0.0 to 1.0 so it doesn’t make
sense to do something like:

void main(){
vec2 st = gl_FragCoord.xy/u_resolution;
vec3 color = vec3(0.0);

st = fract(st);

69

../edit.php#09/dots5.frag
http://10print.org/

color = vec3(st,0.0);
gl_FragColor = vec4(color,1.0);

}

But if we scale the normalized coordinate system up - let’s say by three - we will
get three sequences of linear interpolations between 0-1: the first one between
0-1, the second one for the floating points between 1-2 and the third one for the
floating points between 2-3.

// Author @patriciogv - 2015

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform float u_time;

float circle(in vec2 _st, in float _radius){
vec2 l = _st-vec2(0.5);
return 1.-smoothstep(_radius-(_radius*0.01),

_radius+(_radius*0.01),
dot(l,l)*4.0);

}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution;

vec3 color = vec3(0.0);

st *= 3.0; // Scale up the space by 3
st = fract(st); // Wrap around 1.0

// Now we have 9 spaces that go from 0-1

color = vec3(st,0.0);
//color = vec3(circle(st,0.5));

gl_FragColor = vec4(color,1.0);
}

Now it’s time to draw something in each subspace, by uncommenting line 27.
(Because we are multiplying equally in x and y the aspect ratio of the space
doesn’t change and shapes will be as expected.)

Try some of the following exercises to get a deeper understanding:

• Multiply the space by different numbers. Try with floating point values
and also with different values for x and y.

70

• Make a reusable function of this tiling trick.

• Divide the space into 3 rows and 3 columns. Find a way to know in which
column and row the thread is and use that to change the shape that is
displaying. Try to compose a tic-tac-toe match.

3.5.1 Apply matrices inside patterns

Since each subdivision or cell is a smaller version of the normalized coordinate
system we have already been using, we can apply a matrix transformation to it
in order to translate, rotate or scale the space inside.

// Author @patriciogv (patriciogonzalezvivo.com) - 2015

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform float u_time;

#define PI 3.14159265358979323846

vec2 rotate2D(vec2 _st, float _angle){
_st -= 0.5;
_st = mat2(cos(_angle),-sin(_angle),

sin(_angle),cos(_angle)) * _st;
_st += 0.5;
return _st;

}

vec2 tile(vec2 _st, float _zoom){
_st *= _zoom;
return fract(_st);

}

float box(vec2 _st, vec2 _size, float _smoothEdges){
_size = vec2(0.5)-_size*0.5;
vec2 aa = vec2(_smoothEdges*0.5);
vec2 uv = smoothstep(_size,_size+aa,_st);
uv *= smoothstep(_size,_size+aa,vec2(1.0)-_st);
return uv.x*uv.y;

}

void main(void){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

71

// Divide the space in 4
st = tile(st,4.);

// Use a matrix to rotate the space 45 degrees
st = rotate2D(st,PI*0.25);

// Draw a square
color = vec3(box(st,vec2(0.7),0.01));
// color = vec3(st,0.0);

gl_FragColor = vec4(color,1.0);
}

• Think of interesting ways of animating this pattern. Consider animating
color, shapes and motion. Make three different animations.

• Recreate more complicated patterns by composing different shapes.

• Combine different layers of patterns to compose your own Scottish Tartan
Patterns.

72

../edit.php#09/diamondtiles.frag
https://www.google.com/search?q=scottish+patterns+fabric&tbm=isch&tbo=u&source=univ&sa=X&ei=Y1aFVfmfD9P-yQTLuYCIDA&ved=0CB4QsAQ&biw=1399&bih=799#tbm=isch&q=Scottish+Tartans+Patterns
https://www.google.com/search?q=scottish+patterns+fabric&tbm=isch&tbo=u&source=univ&sa=X&ei=Y1aFVfmfD9P-yQTLuYCIDA&ved=0CB4QsAQ&biw=1399&bih=799#tbm=isch&q=Scottish+Tartans+Patterns
http://graphicriver.net/item/vector-pattern-scottish-tartan/6590076

3.5.2 Offset patterns

So let’s say we want to imitate a brick wall. Looking at the wall, you can see a
half brick offset on x in every other row. How we can do that?

As a first step we need to know if the row of our thread is an even or odd number,
because we can use that to determine if we need to offset the x in that row.

____we have to fix these next two paragraphs together____

To determine if our thread is in an odd or even row, we are going to use mod() of
2.0 and then see if the result is under 1.0 or not. Take a look at the following
formula and uncomment the two last lines.

As you can see we can use a ternary operator to check if the mod() of 2.0 is
under 1.0 (second line) or similarly we can use a step() function which does
the same operation, but faster. Why? Although is hard to know how each
graphic card optimizes and compiles the code, it is safe to assume that built-in
functions are faster than non-built-in ones. Everytime you can use a built-in
function, use it!

So now that we have our odd number formula we can apply an offset to the odd
rows to give a brick effect to our tiles. Line 14 of the following code is where we
are using the function to “detect” odd rows and give them a half-unit offset on
x. Note that for even rows, the result of our function is 0.0, and multiplying
0.0 by the offset of 0.5 gives an offset of 0.0. But on odd rows we multiply
the result of our function, 1.0, by the offset of 0.5, which moves the x axis of
the coordinate system by 0.5.

Now try uncommenting line 32 - this stretches the aspect ratio of the coordinate

73

https://en.wikipedia.org/wiki/%3F:

system to mimic the aspect of a “modern brick”. By uncommenting line 40 you
can see how the coordinate system looks mapped to red and green.

// Author @patriciogv (patriciogonzalezvivo.com) - 2015

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform float u_time;

vec2 brickTile(vec2 _st, float _zoom){
_st *= _zoom;

// Here is where the offset is happening
_st.x += step(1., mod(_st.y,2.0)) * 0.5;

return fract(_st);
}

float box(vec2 _st, vec2 _size){
_size = vec2(0.5)-_size*0.5;
vec2 uv = smoothstep(_size,_size+vec2(1e-4),_st);
uv *= smoothstep(_size,_size+vec2(1e-4),vec2(1.0)-_st);
return uv.x*uv.y;

}

void main(void){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

// Modern metric brick of 215mm x 102.5mm x 65mm
// http://www.jaharrison.me.uk/Brickwork/Sizes.html
// st /= vec2(2.15,0.65)/1.5;

// Apply the brick tiling
st = brickTile(st,5.0);

color = vec3(box(st,vec2(0.9)));

// Uncomment to see the space coordinates
// color = vec3(st,0.0);

gl_FragColor = vec4(color,1.0);
}

74

• Try animating this by moving the offset according to time.

• Make another animation where even rows move to the left and odd rows
move to the right.

• Can you repeat this effect but with columns?

• Try combining an offset on x and y axis to get something like this:

3.6 Truchet Tiles
Now that we’ve learned how to tell if our cell is in an even or odd row or column,
it’s possible to reuse a single design element depending on its position. Consider
the case of the Truchet Tiles where a single design element can be presented in
four different ways:

By changing the pattern across tiles, it’s possible to construct an infinite set of
complex designs.

Pay close attention to the function rotateTilePattern(), which subdivides
the space into four cells and assigns an angle of rotation to each one.

// Author @patriciogv (patriciogonzalezvivo.com) - 2015

#ifdef GL_ES
precision mediump float;
#endif

#define PI 3.14159265358979323846

uniform vec2 u_resolution;
uniform float u_time;

75

http://en.wikipedia.org/wiki/Truchet_tiles

vec2 rotate2D (vec2 _st, float _angle) {
_st -= 0.5;
_st = mat2(cos(_angle),-sin(_angle),

sin(_angle),cos(_angle)) * _st;
_st += 0.5;
return _st;

}

vec2 tile (vec2 _st, float _zoom) {
_st *= _zoom;
return fract(_st);

}

vec2 rotateTilePattern(vec2 _st){

// Scale the coordinate system by 2x2
_st *= 2.0;

// Give each cell an index number
// according to its position
float index = 0.0;
index += step(1., mod(_st.x,2.0));
index += step(1., mod(_st.y,2.0))*2.0;

// |
// 2 | 3
// |
//--------------
// |
// 0 | 1
// |

// Make each cell between 0.0 - 1.0
_st = fract(_st);

// Rotate each cell according to the index
if(index == 1.0){

// Rotate cell 1 by 90 degrees
_st = rotate2D(_st,PI*0.5);

} else if(index == 2.0){
// Rotate cell 2 by -90 degrees
_st = rotate2D(_st,PI*-0.5);

} else if(index == 3.0){
// Rotate cell 3 by 180 degrees
_st = rotate2D(_st,PI);

76

}

return _st;
}

void main (void) {
vec2 st = gl_FragCoord.xy/u_resolution.xy;

st = tile(st,3.0);
st = rotateTilePattern(st);

// Make more interesting combinations
// st = tile(st,2.0);
// st = rotate2D(st,-PI*u_time*0.25);
// st = rotateTilePattern(st*2.);
// st = rotate2D(st,PI*u_time*0.25);

// step(st.x,st.y) just makes a b&w triangles
// but you can use whatever design you want.
gl_FragColor = vec4(vec3(step(st.x,st.y)),1.0);

}

• Comment, uncomment and duplicate lines 69 to 72 to compose new de-
signs.

• Change the black and white triangle for another element like: half circles,
rotated squares or lines.

• Code other patterns where the elements are rotated according to their
position.

• Make a pattern that changes other properties according to the position of
the elements.

• Think of something else that is not necessarily a pattern where you can
apply the principles from this section. (Ex: I Ching hexagrams)

3.7 Making your own rules
Making procedural patterns is a mental exercise in finding minimal reusable
elements. This practice is old; we as a species have been using grids and patterns
to decorate textiles, floors and borders of objects for a long time: from meanders
patterns in ancient Greece, to Chinese lattice design, the pleasure of repetition
and variation catches our imagination. Take some time to look at decorative
patterns and see how artists and designers have a long history of navigating the
fine edge between the predictability of order and the surprise of variation and
chaos. From Arabic geometrical patterns, to gorgeous African fabric designs,
there is an entire universe of patterns to learn from.

77

https://archive.org/stream/traditionalmetho00chririch#page/130/mode/2up
https://www.pinterest.com/patriciogonzv/paterns/

Figure 20: Franz Sales Meyer - A handbook of ornament (1920)

78

With this chapter we end the section on Algorithmic Drawing. In the following
chapters we will learn how to bring some entropy to our shaders and produce
generative designs.

4 Generative designs
It is not a surprise that after so much repetition and order the author is forced
to bring some chaos.

4.1 Random

Randomness is a maximal expression of entropy. How can we generate random-
ness inside the seemingly predictable and rigid code environment?

Let’s start by analyzing the following function:

Above we are extracting the fractional content of a sine wave. The sin() values
that fluctuate between -1.0 and 1.0 have been chopped behind the floating
point, returning all positive values between 0.0 and 1.0. We can use this effect
to get some pseudo-random values by “breaking” this sine wave into smaller
pieces. How? By multiplying the resultant of sin(x) by larger numbers. Go
ahead and click on the function above and start adding some zeros.

By the time you get to 100000.0 (and the equation looks like this: y =
fract(sin(x)*100000.0)) you aren’t able to distinguish the sine wave any
more. The granularity of the fractional part has corrupted the flow of the sine
wave into pseudo-random chaos.

79

http://www.ryojiikeda.com/project/testpattern/#testpattern_live_set

4.2 Controlling chaos
Using random can be hard; it is both too chaotic and sometimes not random
enough. Take a look at the following graph. To make it, we are using a rand()
function which is implemented exactly like we describe above.

Taking a closer look, you can see the sin() wave crest at -1.5707 and 1.5707.
I bet you now understand why - it’s where the maximum and minimum of the
sine wave happens.

If look closely at the random distribution, you will note that the there is some
concentration around the middle compared to the edges.

A while ago Pixelero published an interesting article about random distribution.
I’ve added some of the functions he uses in the previous graph for you to play
with and see how the distribution can be changed. Uncomment the functions
and see what happens.

If you read Pixelero’s article, it is important to keep in mind that our rand()
function is a deterministic random, also known as pseudo-random. Which
means for example rand(1.) is always going to return the same value. Pix-
elero makes reference to the ActionScript function Math.random() which is
non-deterministic; every call will return a different value.

4.3 2D Random
Now that we have a better understanding of randomness, it’s time to apply it in
two dimensions, to both the x and y axis. For that we need a way to transform
a two dimensional vector into a one dimensional floating point value. There
are different ways to do this, but the dot() function is particulary helpful in
this case. It returns a single float value between 0.0 and 1.0 depending on the
alignment of two vectors.

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

float random (vec2 st) {
return fract(sin(dot(st.xy,

vec2(12.9898,78.233)))*
43758.5453123);

}

80

https://pixelero.wordpress.com
https://pixelero.wordpress.com/2008/04/24/various-functions-and-various-distributions-with-mathrandom/
https://pixelero.wordpress.com/2008/04/24/various-functions-and-various-distributions-with-mathrandom/
https://pixelero.wordpress.com/2008/04/24/various-functions-and-various-distributions-with-mathrandom/
https://pixelero.wordpress.com/2008/04/24/various-functions-and-various-distributions-with-mathrandom/

void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;

float rnd = random(st);

gl_FragColor = vec4(vec3(rnd),1.0);
}

Take a look at lines 13 to 15 and notice how we are comparing the vec2 st with
another two dimensional vector (vec2(12.9898,78.233)).

• Try changing the values on lines 14 and 15. See how the random pattern
changes and think about what we can learn from this.

• Hook this random function to the mouse interaction (u_mouse) and time
(u_time) to understand better how it works.

4.4 Using the chaos
Random in two dimensions looks a lot like TV noise, right? It’s a hard raw
material to use to compose images. Let’s learn how to make use of it.

Our first step is to apply a grid to it; using the floor() function we will generate
an integer table of cells. Take a look at the following code, especially lines 22
and 23.

// Author @patriciogv - 2015
// Title: Mosaic

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

float random (vec2 st) {
return fract(sin(dot(st.xy,

vec2(12.9898,78.233)))*
43758.5453123);

}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;

st *= 10.0; // Scale the coordinate system by 10

81

vec2 ipos = floor(st); // get the integer coords
vec2 fpos = fract(st); // get the fractional coords

// Assign a random value based on the integer coord
vec3 color = vec3(random(ipos));

// Uncomment to see the subdivided grid
// color = vec3(fpos,0.0);

gl_FragColor = vec4(color,1.0);
}

After scaling the space by 10 (on line 21), we separate the integers of the coordi-
nates from the fractional part. We are familiar with this last operation because
we have been using it to subdivide a space into smaller cells that go from 0.0
to 1.0. By obtaining the integer of the coordinate we isolate a common value
for a region of pixels, which will look like a single cell. Then we can use that
common integer to obtain a random value for that area. Because our random
function is deterministic, the random value returned will be constant for all the
pixels in that cell.

Uncomment line 29 to see that we preserve the floating part of the coordinate,
so we can still use that as a coordinate system to draw things inside each cell.

Combining these two values - the integer part and the fractional part of the
coordinate - will allow you to mix variation and order.

Take a look at this GLSL port of the famous 10 PRINT CHR$(205.5+RND(1));
: GOTO 10 maze generator.

// Author @patriciogv - 2015
// Title: Truchet - 10 print

#ifdef GL_ES
precision mediump float;
#endif

#define PI 3.14159265358979323846

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

float random (in vec2 _st) {
return fract(sin(dot(_st.xy,

vec2(12.9898,78.233)))*
43758.5453123);

}

82

vec2 truchetPattern(in vec2 _st, in float _index){
_index = fract(((_index-0.5)*2.0));
if (_index > 0.75) {

_st = vec2(1.0) - _st;
} else if (_index > 0.5) {

_st = vec2(1.0-_st.x,_st.y);
} else if (_index > 0.25) {

_st = 1.0-vec2(1.0-_st.x,_st.y);
}
return _st;

}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st *= 10.0;
// st = (st-vec2(5.0))*(abs(sin(u_time*0.2))*5.);
// st.x += u_time*3.0;

vec2 ipos = floor(st); // integer
vec2 fpos = fract(st); // fraction

vec2 tile = truchetPattern(fpos, random(ipos));

float color = 0.0;

// Maze
color = smoothstep(tile.x-0.3,tile.x,tile.y)-

smoothstep(tile.x,tile.x+0.3,tile.y);

// Circles
// color = (step(length(tile),0.6) -
// step(length(tile),0.4)) +
// (step(length(tile-vec2(1.)),0.6) -
// step(length(tile-vec2(1.)),0.4));

// Truchet (2 triangles)
// color = step(tile.x,tile.y);

gl_FragColor = vec4(vec3(color),1.0);
}

Here I’m using the random values of the cells to draw a line in one direction
or the other using the truchetPattern() function from the previous chapter
(lines 41 to 47).

You can get another interesting pattern by uncommenting the block of lines

83

between 50 to 53, or animate the pattern by uncommenting lines 35 and 36.

4.5 Master Random
Ryoji Ikeda, Japanese electronic composer and visual artist, has mastered the
use of random; it is hard not to be touched and mesmerized by his work. His
use of randomness in audio and visual mediums is forged in such a way that it is
not annoying chaos but a mirror of the complexity of our technological culture.

Take a look at Ikeda’s work and try the following exercises:

• Make rows of moving cells (in opposite directions) with random values.
Only display the cells with brighter values. Make the velocity of the rows
fluctuate over time.

• Similarly make several rows but each one with a different speed and di-
rection. Hook the position of the mouse to the threshold of which cells to
show.

• Create other interesting effects.

Using random aesthetically can be problematic, especially if you want to make
natural-looking simulations. Random is simply too chaotic and very few things
look random() in real life. If you look at a rain pattern or a stock chart, which
are both quite random, they are nothing like the random pattern we made at the
begining of this chapter. The reason? Well, random values have no correlation
between them what so ever, but most natural patterns have some memory of
the previous state.

In the next chapter we will learn about noise, the smooth and natural looking
way of creating computational chaos.

Figure 21: NASA / WMAP science team

84

http://www.ryojiikeda.com/
http://www.ryojiikeda.com/

4.6 Noise
It’s time for a break! We’ve been playing with random functions that look like
TV white noise, our head is still spinning thinking about shaders, and our eyes
are tired. Time to go out for a walk!

We feel the air on our skin, the sun in our face. The world is such a vivid and
rich place. Colors, textures, sounds. While we walk we can’t avoid noticing the
surface of the roads, rocks, trees and clouds.

85

The unpredictability of these textures could be called “random,” but they don’t
look like the random we were playing with before. The “real world” is such a
rich and complex place! How can we approximate this variety computationally?

This was the question Ken Perlin was trying to solve in the early 1980s when
he was commissioned to generate more realistic textures for the movie “Tron.”
In response to that, he came up with an elegant Oscar winning noise algorithm.
(No biggie.)

The following is not the classic Perlin noise algorithm, but it is a good starting
point to understand how to generate noise.

In these lines we are doing something similar to what we did in the previous
chapter. We are subdividing a continuous floating number (x) into its integer
(i) and fractional (f) components. We use floor() to obtain i and fract() to
obtain f. Then we apply rand() to the integer part of x, which gives a unique
random value for each integer.

After that you see two commented lines. The first one interpolates each random
value linearly.

y = mix(rand(i), rand(i + 1.0), f);

86

https://mrl.nyu.edu/~perlin/

Figure 22: Disney - Tron (1982)

Go ahead and uncomment this line to see how this looks. We use the fract()
value store in f to mix() the two random values.

At this point in the book, we’ve learned that we can do better than a linear
interpolation, right? Now try uncommenting the following line, which uses a
smoothstep() interpolation instead of a linear one.

y = mix(rand(i), rand(i + 1.0), smoothstep(0.,1.,f));

After uncommenting it, notice how the transition between the peaks gets
smooth. In some noise implementations you will find that programmers prefer
to code their own cubic curves (like the following formula) instead of using the
smoothstep().

float u = f * f * (3.0 - 2.0 * f); // custom cubic curve
y = mix(rand(i), rand(i + 1.0), u); // using it in the interpolation

This smooth randomness is a game changer for graphical engineers or artists -
it provides the ability to generate images and geometries with an organic feel-
ing. Perlin’s Noise Algorithm has been implemented over and over in different
languages and dimensions to make mesmerizing pieces for all sorts of creative
uses.

Now it’s your turn:

• Make your own float noise(float x) function.

• Use your noise function to animate a shape by moving it, rotating it or
scaling it.

• Make an animated composition of several shapes ‘dancing’ together using
noise.

87

Figure 23: Robert Hodgin - Written Images (2010)

• Construct “organic-looking” shapes using the noise function.

• Once you have your “creature,” try to develop it further into a character
by assigning it a particular movement.

4.7 2D Noise

Now that we know how to do noise in 1D, it’s time to move on to 2D.
In 2D, instead of interpolating between two points of a line (fract(x)
and fract(x)+1.0), we are going to interpolate between the four cor-

88

ners of the square area of a plane (fract(st), fract(st)+vec2(1.,0.),
fract(st)+vec2(0.,1.) and fract(st)+vec2(1.,1.)).

Similarly, if we want to obtain 3D noise we need to interpolate between the
eight corners of a cube. This technique is all about interpolating random values,
which is why it’s called value noise.

89

Like the 1D example, this interpolation is not linear but cubic, which smoothly
interpolates any points inside our square grid.

Take a look at the following noise function.

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

// 2D Random
float random (in vec2 st) {

return fract(sin(dot(st.xy,

90

vec2(12.9898,78.233)))
* 43758.5453123);

}

// 2D Noise based on Morgan McGuire @morgan3d
// https://www.shadertoy.com/view/4dS3Wd
float noise (in vec2 st) {

vec2 i = floor(st);
vec2 f = fract(st);

// Four corners in 2D of a tile
float a = random(i);
float b = random(i + vec2(1.0, 0.0));
float c = random(i + vec2(0.0, 1.0));
float d = random(i + vec2(1.0, 1.0));

// Smooth Interpolation

// Cubic Hermine Curve. Same as SmoothStep()
vec2 u = f*f*(3.0-2.0*f);
// u = smoothstep(0.,1.,f);

// Mix 4 coorners percentages
return mix(a, b, u.x) +

(c - a)* u.y * (1.0 - u.x) +
(d - b) * u.x * u.y;

}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;

// Scale the coordinate system to see
// some noise in action
vec2 pos = vec2(st*5.0);

// Use the noise function
float n = noise(pos);

gl_FragColor = vec4(vec3(n), 1.0);
}

We start by scaling the space by 5 (line 45) in order to see the interpolation
between the squares of the grid. Then inside the noise function we subdivide
the space into cells. We store the integer position of the cell along with the
fractional positions inside the cell. We use the integer position to calculate the
four corners’ coordinates and obtain a random value for each one (lines 23-26).

91

Finally, in line 35 we interpolate between the 4 random values of the corners
using the fractional positions we stored before.

Now it’s your turn. Try the following exercises:

• Change the multiplier of line 45. Try to animate it.

• At what level of zoom does the noise start looking like random again?

• At what zoom level is the noise is imperceptible?

• Try to hook up this noise function to the mouse coordinates.

• What if we treat the gradient of the noise as a distance field? Make
something interesting with it.

• Now that you’ve achieved some control over order and chaos, it’s time to
use that knowledge. Make a composition of rectangles, colors and noise
that resembles some of the complexity of a Mark Rothko painting.

Figure 24: Mark Rothko - Three (1950)

4.8 Using Noise in Generative Designs
Noise algorithms were originally designed to give a natural je ne sais quoi to
digital textures. The 1D and 2D implementations we’ve seen so far were in-
terpolations between random values, which is why they’re called Value Noise,
but there are more ways to obtain noise…

92

http://en.wikipedia.org/wiki/Mark_Rothko

As you discovered in the previous exercises, value noise tends to look “blocky.”
To diminish this blocky effect, in 1985 Ken Perlin developed another imple-
mentation of the algorithm called Gradient Noise. Ken figured out how to
interpolate random gradients instead of values. These gradients were the result
of a 2D random function that returns directions (represented by a vec2) instead
of single values (float). Click on the following image to see the code and how
it works.

Take a minute to look at these two examples by Inigo Quilez and pay attention
to the differences between value noise and gradient noise.

Like a painter who understands how the pigments of their paints work, the more
we know about noise implementations the better we will be able to use them.
For example, if we use a two dimensional noise implementation to rotate the
space where straight lines are rendered, we can produce the following swirly
effect that looks like wood. Again you can click on the image to see what the
code looks like.

93

../edit.php#11/2d-vnoise.frag
https://mrl.nyu.edu/~perlin/
../edit.php#11/2d-gnoise.frag
http://www.iquilezles.org/
https://www.shadertoy.com/view/lsf3WH
https://www.shadertoy.com/view/XdXGW8

pos = rotate2d(noise(pos)) * pos; // rotate the space
pattern = lines(pos,.5); // draw lines

Another way to get interesting patterns from noise is to treat it like a distance
field and apply some of the tricks described in the Shapes chapter.

color += smoothstep(.15,.2,noise(st*10.)); // Black splatter
color -= smoothstep(.35,.4,noise(st*10.)); // Holes on splatter

A third way of using the noise function is to modulate a shape. This also requires
some of the techniques we learned in the chapter about shapes.

For you to practice:

• What other generative pattern can you make? What about granite? mar-
ble? magma? water? Find three pictures of textures you are interested
in and implement them algorithmically using noise.

• Use noise to modulate a shape.
• What about using noise for motion? Go back to the Matrix chapter.

Use the translation example that moves the “+” around, and apply some
random and noise movements to it.

• Make a generative Jackson Pollock.

94

../edit.php#11/wood.frag
../edit.php#11/splatter.frag

Figure 25: Jackson Pollock - Number 14 gray (1948)

95

4.9 Improved Noise
An improvement by Perlin to his original non-simplex noise Simplex Noise,
is the replacement of the cubic Hermite curve (f(x) = 3x2-2x3 , which is iden-
tical to the smoothstep() function) with a quintic interpolation curve (f(x)
= 6x5-15x4+10x^3). This makes both ends of the curve more “flat” so each
border gracefully stitches with the next one. In other words, you get a more
continuous transition between the cells. You can see this by uncommenting the
second formula in the following graph example (or see the two equations side
by side here).

Note how the ends of the curve change. You can read more about this in Ken’s
own words.

4.10 Simplex Noise
For Ken Perlin the success of his algorithm wasn’t enough. He thought it could
perform better. At Siggraph 2001 he presented the “simplex noise” in which he
achieved the following improvements over the previous algorithm:

• An algorithm with lower computational complexity and fewer multiplica-
tions.

• A noise that scales to higher dimensions with less computational cost.
• A noise without directional artifacts.
• A noise with well-defined and continuous gradients that can be computed

quite cheaply.
• An algorithm that is easy to implement in hardware.

I know what you are thinking… “Who is this man?” Yes, his work is fantastic!
But seriously, how did he improve the algorithm? Well, we saw how for two
dimensions he was interpolating 4 points (corners of a square); so we can cor-
rectly guess that for three (see an implementation here) and four dimensions we
need to interpolate 8 and 16 points. Right? In other words for N dimensions
you need to smoothly interpolate 2 to the N points (2^N). But Ken smartly
noticed that although the obvious choice for a space-filling shape is a square,
the simplest shape in 2D is the equilateral triangle. So he started by replacing
the squared grid (we just learned how to use) for a simplex grid of equilateral
triangles.

96

https://www.desmos.com/calculator/2xvlk5xp8b
https://www.desmos.com/calculator/2xvlk5xp8b
http://mrl.nyu.edu/~perlin/paper445.pdf
http://mrl.nyu.edu/~perlin/paper445.pdf
../edit.php#11/3d-noise.frag

The simplex shape for N dimensions is a shape with N + 1 corners. In other
words one fewer corner to compute in 2D, 4 fewer corners in 3D and 11 fewer
corners in 4D! That’s a huge improvement!

In two dimensions the interpolation happens similarly to regular noise, by in-
terpolating the values of the corners of a section. But in this case, by using a
simplex grid, we only need to interpolate the sum of 3 corners.

How is the simplex grid made? In another brilliant and elegant move, the
simplex grid can be obtained by subdividing the cells of a regular 4 cornered grid

97

into two isosceles triangles and then skewing it until each triangle is equilateral.

Then, as Stefan Gustavson describes in this paper: “…by looking at the integer
parts of the transformed coordinates (x,y) for the point we want to evaluate, we
can quickly determine which cell of two simplices that contains the point. By
also comparing the magnitudes of x and y, we can determine whether the point is
in the upper or the lower simplex, and traverse the correct three corner points.”

In the following code you can uncomment line 44 to see how the grid is skewed,
and then uncomment line 47 to see how a simplex grid can be constructed. Note
how on line 22 we are subdividing the skewed square into two equilateral trian-
gles just by detecting if x > y (“lower” triangle) or y > x (“upper” triangle).

// Author @patriciogv - 2015 - patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

vec2 skew (vec2 st) {
vec2 r = vec2(0.0);
r.x = 1.1547*st.x;
r.y = st.y+0.5*r.x;
return r;

}

98

http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf

vec3 simplexGrid (vec2 st) {
vec3 xyz = vec3(0.0);

vec2 p = fract(skew(st));
if (p.x > p.y) {

xyz.xy = 1.0-vec2(p.x,p.y-p.x);
xyz.z = p.y;

} else {
xyz.yz = 1.0-vec2(p.x-p.y,p.y);
xyz.x = p.x;

}

return fract(xyz);
}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

// Scale the space to see the grid
st *= 10.;

// Show the 2D grid
color.rg = fract(st);

// Skew the 2D grid
// color.rg = fract(skew(st));

// Subdivide the grid into to equilateral triangles
// color = simplexGrid(st);

gl_FragColor = vec4(color,1.0);
}

All these improvements result in an algorithmic masterpiece known as Simplex
Noise. The following is a GLSL implementation of this algorithm made by Ian
McEwan and Stefan Gustavson (and presented in this paper) which is overcom-
plicated for educational purposes, but you will be happy to click on it and see
that it is less cryptic than you might expect, and the code is short and fast.

99

http://webstaff.itn.liu.se/~stegu/jgt2012/article.pdf

Well… enough technicalities, it’s time for you to use this resource in your own
expressive way:

• Contemplate how each noise implementation looks. Imagine them as a
raw material, like a marble rock for a sculptor. What can you say about
about the “feeling” that each one has? Squinch your eyes to trigger your
imagination, like when you want to find shapes in a cloud. What do
you see? What are you reminded of? What do you imagine each noise
implementation could be made into? Following your guts and try to make
it happen in code.

• Make a shader that projects the illusion of flow. Like a lava lamp, ink
drops, water, etc.

• Use Simplex Noise to add some texture to a work you’ve already made.

In this chapter we have introduced some control over the chaos. It was not an
easy job! Becoming a noise-bender-master takes time and effort.

In the following chapters we will see some well known techniques to perfect
your skills and get more out of your noise to design quality generative content
with shaders. Until then enjoy some time outside contemplating nature and
its intricate patterns. Your ability to observe needs equal (or probably more)
dedication than your making skills. Go outside and enjoy the rest of the day!

“Talk to the tree, make friends with it.” Bob Ross

100

../edit.php#11/2d-snoise-clear.frag

4.11 Cellular Noise
In 1996, sixteen years after Perlin’s original Noise and five years before his
Simplex Noise, Steven Worley wrote a paper called “A Cellular Texture Basis
Function”. In it, he describes a procedural texturing technique now extensively
used by the graphics community.

To understand the principles behind it we need to start thinking in terms of
iterations. Probably you know what that means: yes, start using for loops.
There is only one catch with for loops in GLSL: the number we are checking
against must be a constant (const). So, no dynamic loops - the number of
iterations must be fixed.

Let’s take a look at an example.

4.11.1 Points for a distance field

Cellular Noise is based on distance fields, the distance to the closest one of a
set of feature points. Let’s say we want to make a distance field of 4 points.
What do we need to do? Well, for each pixel we want to calculate the
distance to the closest point. That means that we need to iterate through
all the points, compute their distances to the current pixel and store the value
for the one that is closest.

float min_dist = 100.; // A variable to store the closest distance to a point

min_dist = min(min_dist, distance(st, point_a));

101

http://www.rhythmiccanvas.com/research/papers/worley.pdf
http://www.rhythmiccanvas.com/research/papers/worley.pdf

min_dist = min(min_dist, distance(st, point_b));
min_dist = min(min_dist, distance(st, point_c));
min_dist = min(min_dist, distance(st, point_d));

This is not very elegant, but it does the trick. Now let’s re-implement it using
an array and a for loop.

float m_dist = 100.; // minimum distance
for (int i = 0; i < TOTAL_POINTS; i++) {

float dist = distance(st, points[i]);
m_dist = min(m_dist, dist);

}

Note how we use a for loop to iterate through an array of points and keep
track of the minimum distance using a min() function. Here’s a brief working
implementation of this idea:

// Author: @patriciogv
// Title: 4 cells DF

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;

102

st.x *= u_resolution.x/u_resolution.y;

vec3 color = vec3(.0);

// Cell positions
vec2 point[5];
point[0] = vec2(0.83,0.75);
point[1] = vec2(0.60,0.07);
point[2] = vec2(0.28,0.64);
point[3] = vec2(0.31,0.26);
point[4] = u_mouse/u_resolution;

float m_dist = 1.; // minimum distance

// Iterate through the points positions
for (int i = 0; i < 5; i++) {

float dist = distance(st, point[i]);

// Keep the closer distance
m_dist = min(m_dist, dist);

}

// Draw the min distance (distance field)
color += m_dist;

// Show isolines
// color -= step(.7,abs(sin(50.0*m_dist)))*.3;

gl_FragColor = vec4(color,1.0);
}

In the above code, one of the points is assigned to the mouse position. Play
with it so you can get an intuitive idea of how this code behaves. Then try this:

• How can you animate the rest of the points?
• After reading the chapter about shapes, imagine interesting ways to use

this distance field!
• What if you want to add more points to this distance field? What if we

want to dynamically add/subtract points?

4.11.2 Tiling and iteration

You probably notice that for loops and arrays are not very good friends with
GLSL. Like we said before, loops don’t accept dynamic limits on their exit
condition. Also, iterating through a lot of instances reduces the performance of
your shader significantly. That means we can’t use this direct approach for large
amounts of points. We need to find another strategy, one that takes advantage

103

of the parallel processing architecture of the GPU.

One way to approach this problem is to divide the space into tiles. Not every
pixel needs to check the distance to every single point, right? Given the fact that
each pixel runs in its own thread, we can subdivide the space into cells, each one
with one unique point to watch. Also, to avoid aberrations at the edges between
cells we need to check for the distances to the points on the neighboring cells.
That’s the main brillant idea of Steven Worley’s paper. At the end, each pixel
needs to check only nine positions: their own cell’s point and the points in the 8
cells around it. We already subdivide the space into cells in the chapters about:
patterns, random and noise, so hopefully you are familiar with this technique
by now.

// Scale
st *= 3.;

// Tile the space
vec2 i_st = floor(st);
vec2 f_st = fract(st);

So, what’s the plan? We will use the tile coordinates (stored in the integer
coordinate, i_st) to construct a random position of a point. The random2f
function we will use receives a vec2 and gives us a vec2 with a random position.
So, for each tile we will have one feature point in a random position within the
tile.

vec2 point = random2(i_st);

Each pixel inside that tile (stored in the float coordinate, f_st) will check their
distance to that random point.

104

http://www.rhythmiccanvas.com/research/papers/worley.pdf

vec2 diff = point - f_st;
float dist = length(diff);

The result will look like this:

We still need to check the distances to the points in the surrounding tiles, not just
the one in the current tile. For that we need to iterate through the neighbor
tiles. Not all tiles, just the ones immediately around the current one. That
means from -1 (left) to 1 (right) tile in x axis and -1 (bottom) to 1 (top) in y
axis. A 3x3 region of 9 tiles can be iterated through using a double for loop
like this one:

for (int y= -1; y <= 1; y++) {
for (int x= -1; x <= 1; x++) {

// Neighbor place in the grid
vec2 neighbor = vec2(float(x),float(y));
...

}
}

Now, we can compute the position of the points on each one of the neighbors
in our double for loop by adding the neighbor tile offset to the current tile
coordinate.

...
// Random position from current + neighbor place in the grid
vec2 point = random2(i_st + neighbor);
...

105

The rest is all about calculating the distance to that point and storing the closest
one in a variable called m_dist (for minimum distance).

...
vec2 diff = neighbor + point - f_st;

// Distance to the point
float dist = length(diff);

// Keep the closer distance
m_dist = min(m_dist, dist);
...

The above code is inspired by this article by Inigo’s Quilez where he said:

“… it might be worth noting that there’s a nice trick in this code above. Most
implementations out there suffer from precision issues, because they generate
their random points in”domain” space (like “world” or “object” space), which
can be arbitrarily far from the origin. One can solve the issue moving all the
code to higher precision data types, or by being a bit clever. My implementation
does not generate the points in “domain” space, but in “cell” space: once the
integer and fractional parts of the shading point are extracted and therefore the
cell in which we are working identified, all we care about is what happens around
this cell, meaning we can drop all the integer part of our coordinates away all
together, saving many precision bits. In fact, in a regular voronoi implementation
the integer parts of the point coordinates simply cancel out when the random per
cell feature points are subtracted from the shading point. In the implementation
above, we don’t even let that cancelation happen, cause we are moving all the
computations to “cell” space. This trick also allows one to handle the case where
you want to voronoi-shade a whole planet - one could simply replace the input to
be double precision, perform the floor() and fract() computations, and go floating
point with the rest of the computations without paying the cost of changing the
whole implementation to double precision. Of course, same trick applies to Perlin
Noise patterns (but i’ve never seen it implemented nor documented anywhere).”

Recapping: we subdivide the space into tiles; each pixel will calculate the dis-
tance to the point in their own tile and the surrounding 8 tiles; store the closest
distance. The result is a distance field that looks like the following example:

// Author: @patriciogv
// Title: CellularNoise

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;

106

http://www.iquilezles.org/www/articles/smoothvoronoi/smoothvoronoi.htm

uniform float u_time;

vec2 random2(vec2 p) {
return fract(sin(vec2(dot(p,vec2(127.1,311.7)),dot(p,vec2(269.5,183.3))))*43758.5453);

}

void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st.x *= u_resolution.x/u_resolution.y;
vec3 color = vec3(.0);

// Scale
st *= 3.;

// Tile the space
vec2 i_st = floor(st);
vec2 f_st = fract(st);

float m_dist = 1.; // minimum distance

for (int y= -1; y <= 1; y++) {
for (int x= -1; x <= 1; x++) {

// Neighbor place in the grid
vec2 neighbor = vec2(float(x),float(y));

// Random position from current + neighbor place in the grid
vec2 point = random2(i_st + neighbor);

// Animate the point
point = 0.5 + 0.5*sin(u_time + 6.2831*point);

// Vector between the pixel and the point
vec2 diff = neighbor + point - f_st;

// Distance to the point
float dist = length(diff);

// Keep the closer distance
m_dist = min(m_dist, dist);

}
}

// Draw the min distance (distance field)
color += m_dist;

// Draw cell center

107

color += 1.-step(.02, m_dist);

// Draw grid
color.r += step(.98, f_st.x) + step(.98, f_st.y);

// Show isolines
// color -= step(.7,abs(sin(27.0*m_dist)))*.5;

gl_FragColor = vec4(color,1.0);
}

Explore this further by:

• Scaling the space by different values.
• Can you think of other ways to animate the points?
• What if we want to compute an extra point with the mouse position?
• What other ways of constructing this distance field can you imagine, be-

sides m_dist = min(m_dist, dist);?
• What interesting patterns can you make with this distance field?

This algorithm can also be interpreted from the perspective of the points and
not the pixels. In that case it can be described as: each point grows until it
finds the growing area from another point. This mirrors some of the growth
rules in nature. Living forms are shaped by this tension between an inner force
to expand and grow, and limitations by outside forces. The classic algorithm
that simulates this behavior is named after Georgy Voronoi.

108

https://en.wikipedia.org/wiki/Georgy_Voronoy

4.11.3 Voronoi Algorithm

Constructing Voronoi diagrams from cellular noise is less hard than what it
might seem. We just need to keep some extra information about the precise
point which is closest to the pixel. For that we are going to use a vec2 called
m_point. By storing the vector direction to the center of the closest point,
instead of just the distance, we will be “keeping” a “unique” identifier of that
point.

109

...
if(dist < m_dist) {

m_dist = dist;
m_point = point;

}
...

Note that in the following code that we are no longer using min to calculate the
closest distance, but a regular if statement. Why? Because we actually want
to do something more every time a new closer point appears, namely store its
position (lines 32 to 37).

// Author: @patriciogv
// Title: 4 cells voronoi

#ifdef GL_ES
precision mediump float;
#endif

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st.x *= u_resolution.x/u_resolution.y;

vec3 color = vec3(.0);

// Cell positions
vec2 point[5];
point[0] = vec2(0.83,0.75);
point[1] = vec2(0.60,0.07);
point[2] = vec2(0.28,0.64);
point[3] = vec2(0.31,0.26);
point[4] = u_mouse/u_resolution;

float m_dist = 1.; // minimum distance
vec2 m_point; // minimum position

// Iterate through the points positions
for (int i = 0; i < 5; i++) {

float dist = distance(st, point[i]);
if (dist < m_dist) {

// Keep the closer distance
m_dist = dist;

110

// Kepp the position of the closer point
m_point = point[i];

}
}

// Add distance field to closest point center
color += m_dist*2.;

// tint acording the closest point position
color.rg = m_point;

// Show isolines
color -= abs(sin(80.0*m_dist))*0.07;

// Draw point center
color += 1.-step(.02, m_dist);

gl_FragColor = vec4(color,1.0);
}

Note how the color of the moving cell (bound to the mouse position) changes
color according to its position. That’s because the color is assigned using the
value (position) of the closest point.

Like we did before, now is the time to scale this up, switching to Steven Worley’s
paper’s approach. Try implementing it yourself. You can use the help of the
following example by clicking on it. Note that Steven Worley’s original approach
uses a variable number of feature points for each tile, more than one in most
tiles. In his software implementation in C, this is used to speed up the loop by
making early exits. GLSL loops don’t allow variable number of iterations, so
you probably want to stick to one feature point per tile.

Once you figure out this algorithm, think of interesting and creative uses for it.

4.11.4 Improving Voronoi

In 2011, Stefan Gustavson optimized Steven Worley’s algorithm to GPU by
only iterating through a 2x2 matrix instead of 3x3. This reduces the amount
of work significantly, but it can create artifacts in the form of discontinuities at
the edges between the tiles. Take a look to the following examples.

Later in 2012 Inigo Quilez wrote an article on how to make precise Voronoi
borders.

Inigo’s experiments with Voronoi didn’t stop there. In 2014 he wrote this nice
article about what he calls voro-noise, a function that allows a gradual blend
between regular noise and voronoi. In his words:

“Despite this similarity, the fact is that the way the grid is used in both patterns is

111

http://www.rhythmiccanvas.com/research/papers/worley.pdf
http://www.rhythmiccanvas.com/research/papers/worley.pdf
http://webstaff.itn.liu.se/~stegu/GLSL-cellular/GLSL-cellular-notes.pdf
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
http://www.iquilezles.org/www/articles/voronoise/voronoise.htm

Figure 26: Extended Voronoi - Leo Solaas (2011)

different. Noise interpolates/averages random values (as in value noise) or gra-
dients (as in gradient noise), while Voronoi computes the distance to the closest
feature point. Now, smooth-bilinear interpolation and minimum evaluation are
two very different operations, or… are they? Can they perhaps be combined in a
more general metric? If that was so, then both Noise and Voronoi patterns could
be seen as particular cases of a more general grid-based pattern generator?”

Now it’s time for you to look closely at things, be inspired by nature and find
your own take on this technique!

4.12 Fractal Brownian Motion
Noise tends to mean different things to different people. Musicians will think of it
in terms of disturbing sounds, communicators as interference and astrophysicists
as cosmic microwave background radiation. These concepts bring us back to
the physical reasons behind randomness in the world around us. However, let’s
start with something more fundamental, and more simple: waves and their
properties. A wave is a fluctuation over time of some property. Audio waves are
fluctuations in air pressure, electromagnetical waves are fluctuations in electrical
and magnetic fields. Two important characteristics of a wave are its amplitude
and frequency. The equation for a simple linear (one-dimensional) wave looks
like this:

• Try changing the values of the frequency and amplitude to understand
how they behave.

• Using shaping functions, try changing the amplitude over time.
• Using shaping functions, try changing the frequency over time.

By doing the last two exercises you have managed to “modulate” a sine wave,

112

Figure 27: Cloud Cities - Tomás Saraceno (2011)

113

Figure 28: Accretion Disc Series - Clint Fulkerson

114

Figure 29: Vonoroi Puzzle - Reza Ali (2015)

Figure 30: Deyrolle glass film - 1831

115

Figure 31: Due East over Shadequarter Mountain - Matthew Rangel (2005)

and you just created AM (amplitude modulated) and FM (frequency modulated)
waves. Congratulations!

Another interesting property of waves is their ability to add up, which is formally
called superposition. Comment/uncomment and tweak the following lines. Pay
attention to how the overall appearance changes as we add waves of different
amplitudes and frequencies together.

• Experiment by changing the frequency and amplitude for the additional
waves.

• Is it possible to make two waves cancel each other out? What will that
look like?

• Is it possible to add waves in such a way that they will amplify each other?

In music, each note is associated with a specific frequency. The frequencies for
these notes follow a pattern which we call a scale, where a doubling or halving
of the frequency corresponds to a jump of one octave.

Now, let’s use Perlin noise instead of a sine wave! Perlin noise in its basic
form has the same general look and feel as a sine wave. Its amplitude and
frequency vary somewhat, but the amplitude remains reasonably consistent, and
the frequency is restricted to a fairly narrow range around a center frequency.
It’s not as regular as a sine wave, though, and it’s easier to create an appearance
of randomness by summing up several scaled versions of noise. It is possible to

116

make a sum of sine waves appear random as well, but it takes many different
waves to hide their periodic, regular nature.

By adding different iterations of noise (octaves), where we successively increment
the frequencies in regular steps (lacunarity) and decrease the amplitude (gain)
of the noise we can obtain a finer granularity in the noise and get more fine
detail. This technique is called “fractal Brownian Motion” (fBM), or simply
“fractal noise”, and in its simplest form it can be created by the following code:

• Progressively change the number of octaves to iterate from 1 to 2, 4, 8
and 10. See what happens.

• When you have more than 4 octaves, try changing the lacunarity value.
• Also with >4 octaves, change the gain value and see what happens.

Note how with each additional octave, the curve seems to get more detail. Also
note the self-similarity while more octaves are added. If you zoom in on the
curve, a smaller part looks about the same as the whole thing, and each section
looks more or less the same as any other section. This is an important property
of mathematical fractals, and we are simulating that property in our loop. We
are not creating a true fractal, because we stop the summation after a few
iterations, but theoretically speaking, we would get a true mathematical fractal
if we allowed the loop to continue forever and add an infinite number of noise
components. In computer graphics, we always have a limit to the smallest details
we can resolve, for example when objects become smaller than a pixel, so there
is no need to make infinite sums to create the appearance of a fractal. A lot of
terms may be needed sometimes, but never an infinite number.

The following code is an example of how fBm could be implemented in two
dimensions to create a fractal-looking pattern:

• Reduce the number of octaves by changing the value on line 37
• Modify the lacunarity of the fBm on line 47
• Explore by changing the gain on line 48

This technique is commonly used to construct procedural landscapes. The self-
similarity of the fBm is perfect for mountains, because the erosion processes that
create mountains work in a manner that yields this kind of self-similarity across
a large range of scales. If you are interested in this use, you should definitely
read this great article by Inigo Quiles about advanced noise.

Using more or less the same technique, it’s also possible to obtain other effects
like what is known as turbulence. It’s essentially an fBm, but constructed
from the absolute value of a signed noise to create sharp valleys in the function.

for (int i = 0; i < OCTAVES; i++) {
value += amplitude * abs(snoise(st));
st *= 2.;
amplitude *= .5;

}

117

http://www.iquilezles.org/www/articles/morenoise/morenoise.htm

Figure 32: Blackout - Dan Holdsworth (2010)

118

Another member of this family of algorithms is the ridge, where the sharp
valleys are turned upside down to create sharp ridges instead:

n = abs(n); // create creases
n = offset - n; // invert so creases are at top
n = n * n; // sharpen creases

Another variant which can create useful variations is to multiply the noise com-
ponents together instead of adding them. It’s also interesting to scale subsequent
noise functions with something that depends on the previous terms in the loop.
When we do things like that, we are moving away from the strict definition of
a fractal and into the relatively unknown field of “multifractals”. Multifractals
are not as strictly defined mathematically, but that doesn’t make them less use-
ful for graphics. In fact, multifractal simulations are very common in modern
commercial software for terrain generation. For further reading, you could read
chapter 16 of the book “Texturing and Modeling: a Procedural Approach” (3rd
edition), by Kenton Musgrave. Sadly, that book is out of print since a few
years back, but you can still find it in libraries and on the second hand market.
(There’s a PDF version of the 1st edition available for purchase online, but don’t
buy that - it’s a waste of money. It’s from 1994, and it doesn’t contain any of
the terrain modeling stuff from the 3rd edition.)

4.12.1 Domain Warping

Inigo Quiles wrote this other fascinating article about how it’s possible to use
fBm to warp a space of a fBm. Mind blowing, Right? It’s like the dream inside
the dream of Inception.

Figure 33: f(p) = fbm(p + fbm(p + fbm(p))) - Inigo Quiles (2002)

A less extreme example of this technique is the following code where the wrap is
used to produce this clouds-like texture. Note how the self-similarity property
is still present in the result.

Warping the texture coordinates with noise in this manner can be very useful,

119

http://www.iquilezles.org/www/articles/warp/warp.htm

a lot of fun, and fiendishly difficult to master. It’s a powerful tool, but it takes
quite a bit of experience to use it well. A useful tool for this is to displace
the coordinates with the derivative (gradient) of the noise. A famous article by
Ken Perlin and Fabrice Neyret called “flow noise” is based on this idea. Some
modern implementations of Perlin noise include a variant that computes both
the function and its analytical gradient. If the “true” gradient is not available for
a procedural function, you can always compute finite differences to approximate
it, although this is less accurate and involves more work.

4.13 Fractals
https://www.shadertoy.com/view/lsX3W4

https://www.shadertoy.com/view/Mss3Wf

https://www.shadertoy.com/view/4df3Rn

https://www.shadertoy.com/view/Mss3R8

https://www.shadertoy.com/view/4dfGRn

https://www.shadertoy.com/view/lss3zs

https://www.shadertoy.com/view/4dXGDX

https://www.shadertoy.com/view/XsXGz2

https://www.shadertoy.com/view/lls3D7

https://www.shadertoy.com/view/XdB3DD

https://www.shadertoy.com/view/XdBSWw

https://www.shadertoy.com/view/llfGD2

https://www.shadertoy.com/view/Mlf3RX

120

http://evasion.imag.fr/Publications/2001/PN01/
http://evasion.imag.fr/Publications/2001/PN01/

5 Image processing
5.1 Textures

Graphic cards (GPUs) have special memory types for images. Usually on CPUs
images are stored as arrays of bytes but GPUs store images as sampler2D which
is more like a table (or matrix) of floating point vectors. More interestingly, the
values of this table of vectors are continuous. That means that values between
pixels are interpolated in a low level.

In order to use this feature we first need to upload the image from the CPU
to the GPU, to then pass the id of the texture to the right uniform. All that
happens outside the shader.

Once the texture is loaded and linked to a valid uniform sampler2D you can
ask for specific color value at specific coordinates (formated on a vec2 variable)
using the texture2D() function which will return a color formatted on a vec4
variable.

vec4 texture2D(sampler2D texture, vec2 coordinates)

Check the following code where we load Hokusai’s Wave (1830) as uniform
sampler2D u_tex0 and we call every pixel of it inside the billboard:

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;
#endif

uniform sampler2D u_tex0;
uniform vec2 u_tex0Resolution;

uniform vec2 u_resolution;
uniform vec2 u_mouse;

121

index.html#vec2.md
index.html#texture2D.md
index.html#vec4.md

uniform float u_time;

void main () {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec4 color = vec4(st.x,st.y,0.0,1.0);

color = texture2D(u_tex0,st);

gl_FragColor = color;
}

If you pay attention you will note that the coordinates for the texture are
normalized! What a surprise right? Textures coordinates are consistent with
the rest of the things we had seen and their coordinates are between 0.0 and
1.0 which match perfectly with the normalized space coordinates we have been
using.

Now that you have seen how we correctly load a texture, it is time to experiment
to discover what we can do with it, by trying:

• Scaling the previous texture by half.
• Rotating the previous texture 90 degrees.
• Hooking the mouse position to the coordinates to move it.

Why you should be excited about textures? Well first of all forget about the
sad 255 values for channel; once your image is transformed into a uniform
sampler2D you have all the values between 0.0 and 1.0 (depending on what
you set the precision to). That’s why shaders can make really beautiful
post-processing effects.

Second, the vec2() means you can get values even between pixels. As we said
before the textures are a continuum. This means that if you set up your texture
correctly you can ask for values all around the surface of your image and the
values will smoothly vary from pixel to pixel with no jumps!

Finally, you can set up your image to repeat in the edges, so if you give values
over or lower of the normalized 0.0 and 1.0, the values will wrap around starting
over.

All these features make your images more like an infinite spandex fabric. You
can stretch and shrink your texture without noticing the grid of bytes they are
originally composed of or the ends of it. To experience this take a look at the
following code where we distort a texture using the noise function we already
made.

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;

122

index.html#vec2.md

#endif

#define PI 3.14159265359

uniform sampler2D u_tex0;
uniform vec2 u_tex0Resolution;

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

// Based on Morgan
// https://www.shadertoy.com/view/4dS3Wd
float random (in vec2 st) {

return fract(sin(dot(st.xy,
vec2(12.9898,78.233)))*

43758.5453123);
}

float noise (in vec2 st) {
vec2 i = floor(st);
vec2 f = fract(st);

// Four corners in 2D of a tile
float a = random(i);
float b = random(i + vec2(1.0, 0.0));
float c = random(i + vec2(0.0, 1.0));
float d = random(i + vec2(1.0, 1.0));

vec2 u = f * f * (3.0 - 2.0 * f);

return mix(a, b, u.x) +
(c - a)* u.y * (1.0 - u.x) +
(d - b) * u.x * u.y;

}

void main () {
vec2 st = gl_FragCoord.xy/u_resolution.xy;

float scale = 2.0;
float offset = 0.5;

float angle = noise(st + u_time * 0.1)*PI;
float radius = offset;

st *= scale;

123

st += radius * vec2(cos(angle),sin(angle));

vec4 color = texture2D(u_tex0,st);

gl_FragColor = color;
}

5.2 Texture resolution
Above examples play well with squared images, where both sides are equal and
match our squared billboard. But for non-squared images things can be a little
more tricky, and unfortunately centuries of pictorial art and photography found
more pleasant to the eye non-squared proportions for images.

Figure 34: Joseph Nicéphore Niépce (1826)

How we can solve this problem? Well we need to know the original proportions
of the image to know how to stretch the texture correctly in order to have
the original aspect ratio. For that the texture width and height are passed
to the shader as an uniform, which in our example framework are passed as
an uniform vec2 with the same name of the texture followed with proposition
Resolution. Once we have this information on the shader we can get the aspect
ratio by dividing the width for the height of the texture resolution. Finally by

124

http://en.wikipedia.org/wiki/Aspect_ratio

multiplying this ratio to the coordinates on y we will shrink this axis to match
the original proportions.

Uncomment line 21 of the following code to see this in action.

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;
#endif

uniform sampler2D u_tex0;
uniform vec2 u_tex0Resolution;

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

void main () {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec4 color = vec4(0.0);

// Fix the proportions by finding the aspect ratio
float aspect = u_tex0Resolution.x/u_tex0Resolution.y;
// st.y *= aspect; // and then applying to it

color = texture2D(u_tex0,st);

gl_FragColor = color;
}

• What we need to do to center this image?

125

5.3 Digital upholstery

You may be thinking that this is unnecessarily complicated… and you are proba-
bly right. Also this way of working with images leaves enough room to different
hacks and creative tricks. Try to imagine that you are an upholster and by
stretching and folding a fabric over a structure you can create better and new
patterns and techniques.

This level of craftsmanship links back to some of the first optical experiments
ever made. For example on games sprite animations are very common, and
is inevitably to see on it reminiscence to phenakistoscope, zoetrope and prax-
inoscope.

This could seem simple but the possibilities of modifying textures coordinates
are enormous. For example:

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;
#endif

uniform sampler2D u_tex0;
uniform vec2 u_tex0Resolution;

126

Figure 35: Eadweard’s Muybridge study of motion

127

int col = 5;
int row = 4;

uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;

void main () {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec4 color = vec4(0.0);

// Resolution of one frame
vec2 fRes = u_tex0Resolution/vec2(float(col),float(row));

// Normalize value of the frame resolution
vec2 nRes = u_tex0Resolution/fRes;

// Scale the coordinates to a single frame
st = st/nRes;

// Calculate the offset in cols and rows
float timeX = u_time*15.;
float timeY = floor(timeX/float(col));
vec2 offset = vec2(floor(timeX)/nRes.x,

1.0-(floor(timeY)/nRes.y));
st = fract(st+offset);

color = texture2D(u_tex0,st);

gl_FragColor = color;
}

Now is your turn:

• Can you make a kaleidoscope using what we have learned?

• Way before Oculus or google cardboard, stereoscopic photography was
a big thing. Could you code a simple shader to re-use these beautiful
images?

• What other optical toys can you re-create using textures?

In the next chapters we will learn how to do some image processing using shaders.
You will note that finally the complexity of shader makes sense, because it was
in a big sense designed to do this type of process. We will start doing some
image operations!

128

5.4 Image operations
5.4.1 Invert

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES
precision mediump float;
#endif

uniform sampler2D u_tex0;

uniform float u_time;
uniform vec2 u_mouse;
uniform vec2 u_resolution;

void main (void) {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = texture2D(u_tex0,st).rgb;

// color = 1.0-color;

gl_FragColor = vec4(color,1.0);
}

5.4.2 Add, Substract, Multiply and others

// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com

#ifdef GL_ES

129

precision mediump float;
#endif

uniform sampler2D u_tex0;
uniform sampler2D u_tex1;

uniform float u_time;
uniform vec2 u_mouse;
uniform vec2 u_resolution;

void main (void) {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.);
vec3 colorA = texture2D(u_tex0,st).rgb;
vec3 colorB = texture2D(u_tex1,st).rgb;

color = colorA+colorB; // Add
// color = colorA-colorB; // Diff
// color = abs(colorA-colorB); // Abs Diff
// color = colorA*colorB; // Mult
// color = colorA/colorB; // Div
// color = max(colorA,colorB); // Ligther
// color = min(colorA,colorB); // Darker

gl_FragColor = vec4(color,1.0);
}

130

5.4.3 PS Blending modes

#ifdef GL_ES
precision mediump float;
#endif

#define BlendLinearDodgef BlendAddf
#define BlendLinearBurnf BlendSubstractf
#define BlendAddf(base, blend) min(base + blend, 1.0)
#define BlendSubstractf(base, blend) max(base + blend - 1.0, 0.0)
#define BlendLightenf(base, blend) max(blend, base)
#define BlendDarkenf(base, blend) min(blend, base)
#define BlendLinearLightf(base, blend) (blend < 0.5 ? BlendLinearBurnf(base, (2.0 * blend)) : BlendLinearDodgef(base, (2.0 * (blend - 0.5))))
#define BlendScreenf(base, blend) (1.0 - ((1.0 - base) * (1.0 - blend)))
#define BlendOverlayf(base, blend) (base < 0.5 ? (2.0 * base * blend) : (1.0 - 2.0 * (1.0 - base) * (1.0 - blend)))
#define BlendSoftLightf(base, blend) ((blend < 0.5) ? (2.0 * base * blend + base * base * (1.0 - 2.0 * blend)) : (sqrt(base) * (2.0 * blend - 1.0) + 2.0 * base * (1.0 - blend)))
#define BlendColorDodgef(base, blend) ((blend == 1.0) ? blend : min(base / (1.0 - blend), 1.0))
#define BlendColorBurnf(base, blend) ((blend == 0.0) ? blend : max((1.0 - ((1.0 - base) / blend)), 0.0))
#define BlendVividLightf(base, blend) ((blend < 0.5) ? BlendColorBurnf(base, (2.0 * blend)) : BlendColorDodgef(base, (2.0 * (blend - 0.5))))
#define BlendPinLightf(base, blend) ((blend < 0.5) ? BlendDarkenf(base, (2.0 * blend)) : BlendLightenf(base, (2.0 *(blend - 0.5))))
#define BlendHardMixf(base, blend) ((BlendVividLightf(base, blend) < 0.5) ? 0.0 : 1.0)
#define BlendReflectf(base, blend) ((blend == 1.0) ? blend : min(base * base / (1.0 - blend), 1.0))

// Component wise blending
#define Blend(base, blend, funcf) vec3(funcf(base.r, blend.r), funcf(base.g, blend.g), funcf(base.b, blend.b))

131

#define BlendNormal(base, blend) (blend)
#define BlendLighten BlendLightenf
#define BlendDarken BlendDarkenf
#define BlendMultiply(base, blend) (base * blend)
#define BlendAverage(base, blend) ((base + blend) / 2.0)
#define BlendAdd(base, blend) min(base + blend, vec3(1.0))
#define BlendSubstract(base, blend) max(base + blend - vec3(1.0), vec3(0.0))
#define BlendDifference(base, blend) abs(base - blend)
#define BlendNegation(base, blend) (vec3(1.0) - abs(vec3(1.0) - base - blend))
#define BlendExclusion(base, blend) (base + blend - 2.0 * base * blend)
#define BlendScreen(base, blend) Blend(base, blend, BlendScreenf)
#define BlendOverlay(base, blend) Blend(base, blend, BlendOverlayf)
#define BlendSoftLight(base, blend) Blend(base, blend, BlendSoftLightf)
#define BlendHardLight(base, blend) BlendOverlay(blend, base)
#define BlendColorDodge(base, blend) Blend(base, blend, BlendColorDodgef)
#define BlendColorBurn(base, blend) Blend(base, blend, BlendColorBurnf)
#define BlendLinearDodge BlendAdd
#define BlendLinearBurn BlendSubstract

#define BlendLinearLight(base, blend) Blend(base, blend, BlendLinearLightf)
#define BlendVividLight(base, blend) Blend(base, blend, BlendVividLightf)
#define BlendPinLight(base, blend) Blend(base, blend, BlendPinLightf)
#define BlendHardMix(base, blend) Blend(base, blend, BlendHardMixf)
#define BlendReflect(base, blend) Blend(base, blend, BlendReflectf)
#define BlendGlow(base, blend) BlendReflect(blend, base)
#define BlendPhoenix(base, blend) (min(base, blend) - max(base, blend) + vec3(1.0))
#define BlendOpacity(base, blend, F, O) (F(base, blend) * O + blend * (1.0 - O))

uniform sampler2D u_tex0;
uniform sampler2D u_tex1;

uniform float u_time;
uniform vec2 u_mouse;
uniform vec2 u_resolution;

void main (void) {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);

vec3 colorA = texture2D(u_tex0,st).rgb;
vec3 colorB = texture2D(u_tex1,st).rgb;

color = BlendMultiply(colorA,colorB);
// color = BlendAdd(colorA,colorB);
// color = BlendLighten(colorA,colorB);
// color = BlendDarken(colorA,colorB);

132

// color = BlendAverage(colorA,colorB);
// color = BlendSubstract(colorA,colorB);
// color = BlendDifference(colorA,colorB);
// color = BlendNegation(colorA,colorB);
// color = BlendExclusion(colorA,colorB);
// color = BlendScreen(colorA,colorB);
// color = BlendOverlay(colorA,colorB);
// color = BlendSoftLight(colorA,colorB);
// color = BlendHardLight(colorA,colorB);
// color = BlendColorDodge(colorA,colorB);
// color = BlendColorBurn(colorA,colorB);
// color = BlendLinearLight(colorA,colorB);
// color = BlendVividLight(colorA,colorB);
// color = BlendPinLight(colorA,colorB);
// color = BlendHardMix(colorA,colorB);
// color = BlendReflect(colorA,colorB);
// color = BlendGlow(colorA,colorB);
// color = BlendPhoenix(colorA,colorB);

gl_FragColor = vec4(color,1.0);
}

5.5 Kernel convolutions
5.6 Filters

6 Appendix
1. How can I navigate this book off-line?

2. How to run the examples on a Raspberry Pi?

3. How to print this book?

4. How can I collaborate with this book?

5. An introduction for those coming from JS by Nicolas Barradeau

6. An introduction for vectors by …

7. An introduction to interpolation by …

7 Examples Gallery
Created by kynd(@kyndinfo) and Patricio Gonzalez Vivo(@patriciogv)

This is a collection of examples extracted from the chapters of this book
together with shared shaders kindly donated by other readers using the on-line
editor. Feel free to explore and tweak them bit by bit. Once you have

133

http://www.barradeau.com/
http://editor.thebookofshaders.com/
http://editor.thebookofshaders.com/

something you are proud of, click the “Export” and then copy the “URL to
code…”. Send it to [@bookofshaders](https://twitter.com/bookofshaders) or
[@kyndinfo](https://twitter.com/kyndinfo). We are looking forward to see it!

8 Glossary
8.1 By theme

• TYPES

void bool int float bvec2 bvec3 bvec4 ivec2 ivec3 ivec4 vec2 vec3 vec4 mat2 mat3
mat4 sampler2D samplerCube struct

• QUALIFIERS

attribute const uniform varying precision highp mediump lowp in out inout

• BUILT-IN VARIABLES

gl_Position gl_PointSize gl_PointCoord gl_FrontFacing gl_FragCoord
gl_FragColor

• BUILT-IN CONSTANTS

gl_MaxVertexAttribs gl_MaxVaryingVectors gl_MaxVertexTextureImageUnits
gl_MaxCombinedTextureImageUnits gl_MaxTextureImageUnits gl_MaxFragmentUniformVectors
gl_MaxDrawBuffers

• ANGLE & TRIGONOMETRY FUNCTIONS

radians() degrees() sin() cos() tan() asin() acos() atan()

• EXPONENTIAL FUNCTIONS

pow() exp() log() exp2() log2() sqrt() inversesqrt()

• COMMON FUNCTIONS

abs() sign() floor() ceil() fract() mod() min() max() clamp() mix() step() smooth-
step()

• GEOMETRIC FUNCTIONS

length() distance() dot() cross() normalize() facefoward() reflect() refract()

• MATRIX FUNCTIONS

matrixCompMult()

• VECTOR RELATIONAL FUNCTIONS

lessThan() lessThanEqual() greaterThan() greaterThanEqual() equal() notE-
qual() any() all() not()

• TEXTURE LOOKUP FUNCTIONS

134

index.hmtl#gl_PointCoord

texture2D() textureCube()

8.2 Alphabetical
• A

abs() acos() all() any() asin() atan() attribute

• B

bool bvec2 bvec3 bvec4

• C

ceil() clamp() const cos() cross()

• D

degrees() dFdx() dFdy() distance() dot()

• E

equal() exp() exp2()

• F

faceforward() float floor() fract()

• G

greaterThan() greaterThanEqual() gl_FragColor gl_FragCoord gl_FrontFacing
gl_PointCoord gl_PointSize gl_Position gl_MaxCombinedTextureImageUnits
gl_MaxDrawBuffers gl_MaxFragmentUniformVectors gl_MaxVaryingVectors
gl_MaxVertexAttribs gl_MaxVertexTextureImageUnits gl_MaxTextureImageUnits

• H

highp

• I

in inout int inversesqrt() ivec2 ivec3 ivec4

• L

length() lessThan() lessThanEqual() log() log2() lowp

• M

matrixCompMult() mat2 mat3 mat4 max() mediump min() mix() mod()

• N

normalize() not() notEqual()

• O

out

135

index.hmtl#gl_PointCoord

• P

precision pow()

• R

radians() reflect() refract()

• S

sampler2D samplerCube sign() sin() smoothstep() sqrt() step() struct

• T

tan() texture2D() textureCube()

• U

uniform

• V

varying vec2 vec3 vec4 void

136

	Introduction
	Who is this book for?
	What does this book cover?
	What do you need to start?

	Getting started
	What is a fragment shader?
	Why are shaders fast?
	What is GLSL?
	Why are Shaders famously painful?
	Hello World
	Uniforms
	gl_FragCoord
	Running your shader
	Running your shaders on the browser
	Running your shaders on your favorite framework
	In Three.js
	In Processing
	In openFrameworks
	In Blender

	Algorithmic drawing
	Shaping functions
	Step and Smoothstep
	Sine and Cosine
	Some extra useful functions
	Advance shaping functions

	Colors
	Mixing color
	Playing with gradients
	HSB
	HSB in polar coordinates

	Shapes
	Rectangle
	Circles
	Distance field
	Useful properties of a Distance Field
	Polar shapes
	Combining powers

	2D Matrices
	Translate
	Rotations
	Scale
	Other uses for matrices: YUV color

	Patterns
	Apply matrices inside patterns
	Offset patterns

	Truchet Tiles
	Making your own rules

	Generative designs
	Random
	Controlling chaos
	2D Random
	Using the chaos
	Master Random
	Noise
	2D Noise
	Using Noise in Generative Designs
	Improved Noise
	Simplex Noise
	Cellular Noise
	Points for a distance field
	Tiling and iteration
	Voronoi Algorithm
	Improving Voronoi

	Fractal Brownian Motion
	Domain Warping

	Fractals

	Image processing
	Textures
	Texture resolution
	Digital upholstery
	Image operations
	Invert
	Add, Substract, Multiply and others
	PS Blending modes

	Kernel convolutions
	Filters

	Appendix
	Examples Gallery
	Glossary
	By theme
	Alphabetical

